Page 214 - Applied Statistics And Probability For Engineers
P. 214

PQ220 6234F.CD(05)  5/13/02  4:51 PM  Page 2 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark F






               5-2


                                 We will also state this result as follows.



                                    Suppose that X and X are discrete random variables with joint probability distribu-
                                                      2
                                                1
                                            1x ,  x 2,      h (X , X ) and Y   h (X , X ) define one-to-one trans-
                                    tion f X 1 X 2  1  2  and let Y 1  1  1  2  2  2  1  2
                                    formations between the points (x , x ) and (y , y ) so that the equations y   h (x , x )
                                                                                                      2
                                                                          2
                                                              1
                                                                                                    1
                                                                 2
                                                                                             1
                                                                       1
                                                                                                 1
                                    and y   h (x , x ) can be solved uniquely for x and x in terms of y and y . Let this
                                                                                                2
                                         2
                                             2
                                                                                          1
                                                                               2
                                                                          1
                                                  2
                                               1
                                    solution be x   u (y , y ) and x   u (y , y ). Then the joint probability distribution
                                                        2
                                                              2
                                                                       2
                                                     1
                                                   1
                                               1
                                                                  2
                                                                    1
                                    of Y and Y is
                                        1
                                             2
                                                      f  1y , y 2   f    3u 1y , y 2, u 1y , y 24  (S5-2)
                                                                           2
                                                          1
                                                                         1
                                                                                    2
                                                                                 1
                                                                               2
                                                                      1
                                                             2
                                                      Y 1 Y 2     X 1 X 2
                                    A very important application of Equation S5-2 is in finding the distribution of a random vari-
                                 able Y that is a function of two other random variables X and X . That is, let Y   h (X , X )
                                                                                                       1
                                                                                                     1
                                                                                    2
                                                                                                1
                                      1
                                                                                                          2
                                                                              1
                                 where X and X are discrete random variables with joint distribution  f X 1 X 2  1  2  We want to
                                                                                            1x , x 2.
                                       1
                                             2
                                                              , say, f 1 y 2.  To do this, we define a second function Y
                                 find the probability distribution of  Y 1  1                            2
                                                                   Y 1
                                 h (X , X ) so that the one-to-one correspondence between the points (x , x ) and (y , y ) is main-
                                                                                        1
                                    1
                                                                                                 1
                                  2
                                                                                                   2
                                                                                          2
                                       2
                                 tained, and we use the result in Equation S5-2 to find the joint probability distribution of Y and
                                                                                                       1
                                 Y . Then the distribution of Y alone is found by summing over the y values in this joint distribu-
                                                       1
                                  2
                                                                                     2
                                 tion. That is,  f 1y 2  is just the marginal probability distribution of Y , or
                                               1
                                            Y 1                                         1
                                                            f 1 y 2     f  1y ,  y 2
                                                             Y 1  1  a Y 1 Y 2  1  2
                                                                     y 2
               EXAMPLE S5-2      Consider the case where X and X are independent Poisson random variables with parameters
                                                           2
                                                      1
                                   and   , respectively. We will find the distribution of the random variable Y   X   X .
                                                                                              1
                                                                                                       2
                                        2
                                                                                                   1
                                  1
                                    The joint distribution of X and X is
                                                               2
                                                         1
                                             f  1x , x 2   f 1x 2 f 1x 2
                                                1
                                                                2
                                                          1
                                                   2
                                            X 1 X 2    X 1   X 2


                                                       e    1 x 1  e    2 x 2
                                                                  2
                                                            1

                                                         x !   x !
                                                                2
                                                          1

                                                       e  1  1    2 2 x 1 x 2
                                                               1
                                                                 2
                                                                  ,   x   0, 1, p ,   x   0, 1, p
                                                                        1
                                                                                       2
                                                          x ! x !
                                                           1
                                                              2
                                 because X and X are independent. Now to use Equation S5-2 we need to define a second func-
                                         1
                                              2
                                 tion Y   h (X , X ). Let this function be Y   X . Now the solutions for x and x are x   y   y 2
                                                                                                       1
                                               2
                                     2
                                                                                         1
                                         2
                                                                                              2
                                                                                                   1
                                            1
                                                                     2
                                                                 2
                                 and x   y . Thus, from Equation S5-2 the joint probability distribution of Y and Y is
                                                                                                  2
                                     2
                                                                                             1
                                         2

                                                   e  1  1    2 2   1 1 y 1  y 2 2 y 2
                                                                2
                                          1 y , y 2              ,   y   0, 1, 2, p ,   y   0, 1, p , y
                                                    1 y 1   y 2 2! y 2 !
                                       f Y 1 Y 2  1  2                 1                2           1
                                 Because x   0, the transformation x   y   y requires that x   y must always be less than
                                                                  1
                                                              1
                                         1
                                                                                       2
                                                                                   2
                                                                      2
                                 or equal to y . Thus, the values of y are 0, 1, . . . , y , and the marginal probability distribution
                                                                         1
                                           1
                                                             2
                                 of Y is obtained as follows:
                                    1

                                               y 1            y 1  e  1  1    2 2     1 y 1  y 2 2 y 2
                                        1 y 2    a   f  1 y , y 2    a     1   2
                                        f Y 1  1  Y 1 Y 2  1  2
                                                                             2
                                                                     1
                                                                         2
                                             y 2  0          y 2  0  1y   y 2! y !
   209   210   211   212   213   214   215   216   217   218   219