Page 215 - Applied Statistics And Probability For Engineers
P. 215

PQ220 6234F.CD(05)  5/13/02  4:51 PM  Page 3 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark F






                                                                                                          5-3



                                                    e  1  1    2 2  y 1 y 1 !   1 y 1  y 2 2 y 2  e  1  1    2 2  y 1  y 1
                                                                         2
                                                                   1

                                                              a                       a  a b    1 y 1  y 2 2 y 2

                                                                                             1
                                                                                                   2
                                                      y !  y 2  0  1 y   y 2! y !  y !  y 2  0  y 2
                                                       1
                                                                                1
                                                                 1
                                                                     2
                                                                         2
                                   The summation in this last expression is the binomial expansion of 1      2 ,  so
                                                                                                 y 1
                                                                                                2
                                                                                           1
                                                              e  1  1    2 2   1      2  y 1
                                                                      1
                                                                           2
                                                      f 1y 2                 ,   y   0, 1, p
                                                                    y !
                                                      Y 1  1                       1
                                                                     1
                                   We recognize this as a Poisson distribution with parameter   1     2 . Therefore, we have shown
                                   that the sum of two independent Poisson random variables with parameters   1 and   2 has a
                                   Poisson distribution with parameter   1     2 .
                                       We now consider the situation where the random variables are continuous. Let Y   h(X),
                                   with X continuous and the transformation is one to one.
                                       Suppose that X is a continuous random variable with probability distribution f (x).
                                                                                                      X
                                       The function Y   h(X) is a one-to-one transformation between the values of Y and X
                                       so that the equation y   h(x) can be uniquely solved for x in terms of y. Let this
                                       solution be x   u(y). The probability distribution of Y is
                                                                 f 1 y2   f 3u1y24 0 J 0             (S5-3)
                                                                        X
                                                                 Y
                                       where J   u¿ (y) is called the Jacobian of the transformation and the absolute value
                                       of J is used.

                                   Equation S5-3 is shown as follows. Let the function y   h(x) be an increasing function of x.
                                   Now

                                                                P1Y   a2   P3X   u1a24
                                                                         u1a2

                                                                            f 1x2 dx
                                                                            X

                                   If we change the variable of integration from x to y by using x   u(y), we obtain dx   u (y) dy
                                   and then
                                                                       a

                                                           P1Y   a2      f 3u1 y24u¿1y2 dy
                                                                         X

                                   Since the integral gives the probability that Y   a for all values of a contained in the feasible
                                                     3u1y24u¿1 y2  must be the probability density of Y. Therefore, the proba-
                                   set of values for y,  f X
                                   bility distribution of Y is
                                                           f 1y2   f 3u1 y24u¿1 y2   f 3u1 y24J
                                                                                X
                                                           Y      X
                                   If the function y   h(x) is a decreasing function of x, a similar argument holds.
   210   211   212   213   214   215   216   217   218   219   220