Page 273 - Applied Statistics And Probability For Engineers
P. 273

c07.qxd  5/15/02  10:18  M  Page 231 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH114 FIN L:Quark Files:






                                                                        7-3 METHODS OF POINT ESTIMATION   231


                          Definition


                                       Suppose that X is a random variable with probability distribution f(x; ), where  is
                                       a single unknown parameter. Let x , x , p  ,  x be the observed values in a random
                                                                      2
                                                                   1
                                                                            n
                                       sample of size n. Then the likelihood function of the sample is
                                                      L1 2   f 1x ;  2   f 1x ;  2    p    f  1x ;  2  (7-5)
                                                               1
                                                                       2
                                                                                  n
                                       Note that the likelihood function is now a function of only the unknown parameter  .
                                       The maximum likelihood estimator of    is the value of    that maximizes the like-

                                       lihood function L().

                                       In the case of a discrete random variable, the interpretation of the likelihood function is

                                   clear. The likelihood function of the sample L( ) is just the probability
                                                           P1X   x , X   x , p , X   x 2
                                                                                n
                                                                     2
                                                              1
                                                                          2
                                                                   1
                                                                                     n
                                   That is, L( ) is just the probability of obtaining the sample values x , x , p   1  2  ,  x .  Therefore, in
                                                                                                 n
                                   the discrete case, the maximum likelihood estimator is an estimator that maximizes the prob-
                                   ability of occurrence of the sample values.
                 EXAMPLE 7-6       Let X be a Bernoulli random variable. The probability mass function is
                                                                    x      1 x
                                                                   p 11   p2  ,  x   0, 1
                                                          f  1x; p2   e
                                                                   0,           otherwise
                                   where p is the parameter to be estimated. The likelihood function of a random sample of size
                                   n is

                                                    L1 p2   p 11   p2 1 x 1 x 2  1 x 2 p  x n  1 x n
                                                          x 1
                                                                                   p  11   p2
                                                                     p 11   p2
                                                          n                n          n
                                                          q  p 11   p2  1 x i    p i 1 11   p2 n a x i
                                                                           a x i
                                                             x i
                                                                                      i 1
                                                         i 1
                                                  p ˆ
                                                                  p ˆ
                                   We observe that if  maximizes L(p),  also maximizes ln L(p). Therefore,
                                                              n                 n
                                                   ln L1 p2   a  a   x b ln p   an    a   x b ln 11   p2
                                                                  i
                                                                                   i
                                                             i 1               i 1
                                   Now
                                                                     n            n
                                                                    a   x i  an    a   x b
                                                                                     i
                                                          d ln L1 p2  i 1        i 1

                                                            dp        p        1   p
                                                                                    n
                                   Equating this to zero and solving for p yields  p ˆ   11 n2  g i 1  x i . Therefore, the maximum
                                   likelihood estimator of p is
                                                                       1  n
                                                                   ˆ
                                                                       n a
                                                                   P         X i
                                                                         i 1
   268   269   270   271   272   273   274   275   276   277   278