Page 170 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 170

References    159




                   [9] W. Chen, D.G. Brown, Optimistic bias in the assessment of high dimensional classifiers
                      with a limited dataset, in: Proceedings of International Joint Conference on Neural
                      Networks, International Neural Network Society, San Jose, CA, 2011, pp. 2698e2703.
                  [10] R. Simon, M.D. Radmacher, K. Dobbin, L.M. McShane, Pitfalls in the use of DNA
                      microarray data for diagnostic and prognostic classification, Journal of the National
                      Cancer Institute 95 (1) (2003) 14e18.
                  [11] J. Su, D.V. Vargas, S. Kouichi, One Pixel Attack for Fooling Deep Neural Networks,
                      November 16, 2017.
                  [12] J.P. Egan, Signal Detection Theory and ROC Analysis, Harcourt Brace Jovanovich,
                      New York, 1975.
                  [13] J.C. Ogilvie, C.D. Creelman, Maximum-likelihood estimation of receiver operating
                      characteristic curve parameters, Journal of Mathematical Psychology 5 (1968)
                      377e391.
                  [14] C.K. Abbey, M.P. Eckstein, J.M. Boone, Estimating the relative utility of screening
                      mammography, Medical Decision Making 33 (2013) 510e520.
                  [15] C.E. Metz, Basic principles of ROC analysis, Seminars in Nuclear Medicine 7 (4)
                      (1978) 283e298.
                  [16] J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton
                      University Press, 1953.
                  [17] J.G. Elmore, C.K. Wells, C.H. Lee, et al., Variability in radiologists’ interpretations of
                      mammograms, New England Journal of Medicine 331 (22) (1994) 1493e1499.
                  [18] F.W. Samuelson, Inference Based on Diagnostic Measures from Studies of New
                      Imaging Devices, vol. 20, Academic Radiology, 2013, pp. 816e824.
                  [19] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer,
                      New York, 2001.
                  [20] B.J. Efron, R. Tibshirani, Introduction to the Bootstrap, Chapman & Hall, Boca Raton,
                      1993.
                  [21] W. Chen, B.G. Gallas, W.A. Yousef, Classifier variability: accounting for training and
                      testing, Pattern Recognition 45 (2012) 2661e2671.
                  [22] J.A. Hanley, B.J. McNeil, The meaning and use of the area under the receiver operating
                      characteristic curve, Radiology 143 (1) (1982) 29e36.
                  [23] D.G. Brown, A.C. Schneider, M.P. Anderson, R.F. Wagner, Effects of finite sample
                      size and correlated/noisy input features on neural network pattern classification, in:
                      Proceedings of the SPIE Medical Imaging, SPIE, Newport Beach, 1994, 642e561.
                  [24] D.G. Brown, Evaluation of Computational Intelligence Decision Makers. [Online].
                      Cited 2017 11 03. Available from: http://davidgbrown.co/.
   165   166   167   168   169   170   171   172   173   174   175