Page 250 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 250
References 241
[14] C.S. Herrmann, M. Grigutsch, N.A. Busch, EEG oscillations and wavelet analysis, in:
T.C. Handy (Ed.), Event-Related Potentials: A Methods Handbook, MIT Press, 2005,
pp. 229e259.
[15] F. Vecchio, C. Babiloni, R. Lizio, F.V. Fallani, K. Blinowska, G. Verrienti, G. Frisoni,
P.M. Rossini, Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG
markers for clinical applications: a review, Supplements to Clinical Neurophysiology
62 (2013) 223e236.
[16] F. Hatz, M. Hardmeier, N. Benz, M. Ehrensperger, U. Gschwandtner, S. Ruegg,
C. Schindler, A.U. Monsch, P. Fuhr, Microstate connectivity alterations in patients
with early Alzheimer’s disease, Alzheimer’s Research and Therapy 7 (1) (2015) 78.
[17] J. Jeong, EEG dynamics in patients with Alzheimer’s disease, Clinical Neurophysiology
115 (7) (2004) 1490e1505.
[18] P. Parchi, A. Giese, S. Capellari, P. Brown, W. Schulz-Schaeffer, O. Windl, I. Zerr,
H. Budka, N. Kopp, P. Piccardo, et al., Classification of sporadic Creutzfeldt-Jakob dis-
ease based on molecular and phenotypic analysis of 300 subjects, Annals of Neurology
46 (2) (1999) 224e233.
[19] H.G. Wieser, K. Schindler, D. Zumsteg, EEG in CreutzfeldteJakob disease, Clinical
Neurophysiology 117 (5) (2006) 935e951.
[20] U. Aguglia, A. Gambardella, E. Le Piane, D. Messina, G. Farnarier, R. Oliveri,
M. Zappia, A. Quattrone, Disappearance of periodic sharp wave complexes in
Creutzfeldt-Jakob disease, Neurophysiologie Clinique/Clinical Neurophysiology 27
(4) (1997) 277e282.
[21] S. Gasparini, E. Ferlazzo, D. Branca, A. Labate, V. Cianci, M.A. Latella, U. Aguglia,
Teaching neuroimages: pseudohypertrophic cerebral cortex in end-stage Creutzfeldt-
Jakob disease, Neurology 80 (2) (2013) e21.
[22] J. Malmivuo, R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelec-
tric and Biomagnetic Fields, Oxford University Press, USA, 1995.
[23] O.R. Ryynanen, J.A. Hyttinen, P.H. Laarne, J.A. Malmivuo, Effect of electrode density
and measurement noise on the spatial resolution of cortical potential distribution, IEEE
Transactions on Biomedical Engineering 51 (9) (2004) 1547e1554.
[24] O.R. Ryynanen, J.A. Hyttinen, J.A. Malmivuo, Effect of measurement noise and elec-
trode density on the spatial resolution of cortical potential distribution with different
resistivity values for the skull, IEEE Transactions on Biomedical Engineering 53 (9)
(2006) 1851e1858.
[25] R. Srinivasan, D.M. Tucker, M. Murias, Estimating the spatial Nyquist of the human
EEG, Behavior Research Methods 30 (1) (1998) 8e19.
[26] A. Delorme, S. Makeig, EEGLab: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis, Journal of Neuroscience
Methods 134 (1) (2004) 9e21.
[27] P. Me ´gevand, L. Spinelli, M. Genetti, V. Brodbeck, S. Momjian, K. Schaller,
C.M. Michel, S. Vulliemoz, M. Seeck, Electric source imaging of interictal activity
accurately localises the seizure onset zone, Journal of Neurology Neurosurgery and
Psychiatry 85 (1) (2014) 38e43.
[28] S.F. Storti, I.B. Galazzo, A. Del Felice, F.B. Pizzini, C. Arcaro, E. Formaggio, R. Mai,
P. Manganotti, E.S.I. Combining, ASL and PET for quantitative assessment of
drug-resistant focal epilepsy, NeuroImage 102 (2014) 49e59.