Page 251 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 251
242 CHAPTER 11 Deep Learning Approaches to Electrophysiological
[29] V. Brodbeck, L. Spinelli, A.M. Lascano, M. Wissmeier, M.I. Vargas, S. Vulliemoz,
C. Pollo, K. Schaller, C.M. Michel, M. Seeck, Electroencephalographic source imaging:
a prospective study of 152 operated epileptic patients, Brain 134 (10) (2011)
2887e2897.
[30] F.C. Morabito, M. Campolo, N. Mammone, M. Versaci, S. Franceschetti, F. Tagliavini,
et al., Deep learning representation from electroencephalography of early-stage
Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive
dementia, International Journal of Neural Systems 27 (02) (2017) 1650039.
[31] A. Zahra, N. Kanwal, N. ur Rehman, S. Ehsan, K.D. McDonald-Maier, Seizure
detection from EEG signals using multivariate empirical mode decomposition,
Computers in Biology and Medicine 88 (2017) 132e141.
[32] F.C. Morabito, M. Campolo, C. Ieracitano, J.M. Ebadi, L. Bonanno, A. Bramanti, S. De
Salvo, N. Mammone, P. Bramanti, Deep convolutional neural networks for classifica-
tion of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG
recordings, in: Research and Technologies for Society and Industry Leveraging a Better
Tomorrow (RTSI), 2016 IEEE 2nd International Forum on IEEE, 2016, pp. 1e6.
[33] Y. Zhao, L. He, Deep learning in the EEG diagnosis of Alzheimer’s disease, in: Asian
Conference on Computer Vision, Springer, 2014, pp. 340e353.
[34] D. Wulsin, J. Gupta, R. Mani, J. Blanco, B. Litt, Modeling electroencephalography
waveforms with semi-supervised deep belief nets: fast classification and anomaly
measurement, Journal of Neural Engineering 8 (3) (2011) 036015.
[35] P. Mirowski, D. Madhavan, Y. LeCun, R. Kuzniecky, Classification of patterns of EEG
synchronization for seizure prediction, Clinical Neurophysiology 120 (11) (2009)
1927e1940.
[36] J. Turner, A. Page, T. Mohsenin, T. Oates, Deep belief networks used on high-resolution
multichannel electroencephalography data for seizure detection, in: 2014 AAAI Spring
Symposium Series, 2014.
[37] R. Manor, A.B. Geva, Convolutional neural network for multi-category rapid serial
visual presentation BCI, Frontiers in Computational Neuroscience (2015) 9.
[38] H. Cecotti, A. Graser, Convolutional neural network with embedded Fourier transform
for EEG classification, in: Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on IEEE, 2008, pp. 1e4.
[39] H. Cecotti, A. Graser, Convolutional neural networks for P300 detection with applica-
tion to brain-computer interfaces, IEEE Transactions on Pattern Analysis and Machine
Intelligence 33 (3) (2011) 433e445.
[40] R. Schwartz-Ziv, N. Tishby, Opening the Black-Box of Deep Neural Networks via
Information, arXiv:1703.00810v3, April 29, 2017.
[41] Y. Liu, J. Chen, L. Deng, Unsupervised sequence classification using sequential output
statistics, in: Proc. NIPS, 2017.
[42] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, MA,
2016.
[43] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, Salakhutdinov, Improving
Neural Networks by Preventing Co-adaption of Feature Detectors, 2012 arXiv:
1207.0580v1.
[44] Y. Furusho, T. Kubo, K. Ikeda, Roles of pre-training in deep neural networks from
information theoretical perspective, Neurocomputing (2017) 76e79.