Page 251 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 251

242    CHAPTER 11 Deep Learning Approaches to Electrophysiological




                         [29] V. Brodbeck, L. Spinelli, A.M. Lascano, M. Wissmeier, M.I. Vargas, S. Vulliemoz,
                             C. Pollo, K. Schaller, C.M. Michel, M. Seeck, Electroencephalographic source imaging:
                             a prospective study of 152 operated epileptic patients, Brain 134 (10) (2011)
                             2887e2897.
                         [30] F.C. Morabito, M. Campolo, N. Mammone, M. Versaci, S. Franceschetti, F. Tagliavini,
                             et al., Deep learning representation from electroencephalography of early-stage
                             Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive
                             dementia, International Journal of Neural Systems 27 (02) (2017) 1650039.
                         [31] A. Zahra, N. Kanwal, N. ur Rehman, S. Ehsan, K.D. McDonald-Maier, Seizure
                             detection from EEG signals using multivariate empirical mode decomposition,
                             Computers in Biology and Medicine 88 (2017) 132e141.
                         [32] F.C. Morabito, M. Campolo, C. Ieracitano, J.M. Ebadi, L. Bonanno, A. Bramanti, S. De
                             Salvo, N. Mammone, P. Bramanti, Deep convolutional neural networks for classifica-
                             tion of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG
                             recordings, in: Research and Technologies for Society and Industry Leveraging a Better
                             Tomorrow (RTSI), 2016 IEEE 2nd International Forum on IEEE, 2016, pp. 1e6.
                         [33] Y. Zhao, L. He, Deep learning in the EEG diagnosis of Alzheimer’s disease, in: Asian
                             Conference on Computer Vision, Springer, 2014, pp. 340e353.
                         [34] D. Wulsin, J. Gupta, R. Mani, J. Blanco, B. Litt, Modeling electroencephalography
                             waveforms with semi-supervised deep belief nets: fast classification and anomaly
                             measurement, Journal of Neural Engineering 8 (3) (2011) 036015.
                         [35] P. Mirowski, D. Madhavan, Y. LeCun, R. Kuzniecky, Classification of patterns of EEG
                             synchronization for seizure prediction, Clinical Neurophysiology 120 (11) (2009)
                             1927e1940.
                         [36] J. Turner, A. Page, T. Mohsenin, T. Oates, Deep belief networks used on high-resolution
                             multichannel electroencephalography data for seizure detection, in: 2014 AAAI Spring
                             Symposium Series, 2014.
                         [37] R. Manor, A.B. Geva, Convolutional neural network for multi-category rapid serial
                             visual presentation BCI, Frontiers in Computational Neuroscience (2015) 9.
                         [38] H. Cecotti, A. Graser, Convolutional neural network with embedded Fourier transform
                             for EEG classification, in: Pattern Recognition, 2008. ICPR 2008. 19th International
                             Conference on IEEE, 2008, pp. 1e4.
                         [39] H. Cecotti, A. Graser, Convolutional neural networks for P300 detection with applica-
                             tion to brain-computer interfaces, IEEE Transactions on Pattern Analysis and Machine
                             Intelligence 33 (3) (2011) 433e445.
                         [40] R. Schwartz-Ziv, N. Tishby, Opening the Black-Box of Deep Neural Networks via
                             Information, arXiv:1703.00810v3, April 29, 2017.
                         [41] Y. Liu, J. Chen, L. Deng, Unsupervised sequence classification using sequential output
                             statistics, in: Proc. NIPS, 2017.
                         [42] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge, MA,
                             2016.
                         [43] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, Salakhutdinov, Improving
                             Neural Networks by Preventing Co-adaption of Feature Detectors, 2012 arXiv:
                             1207.0580v1.
                         [44] Y. Furusho, T. Kubo, K. Ikeda, Roles of pre-training in deep neural networks from
                             information theoretical perspective, Neurocomputing (2017) 76e79.
   246   247   248   249   250   251   252   253   254   255   256