Page 252 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 252

Further Reading    243




                  [45] D. Labate, F. La Foresta, I. Palamara, G. Morabito, Bramanti, Z. Zhang, F.C. Morabito,
                      EEG complexity modifications and altered compressibility in mild cognitive impair-
                      ment and Alzheimer’s disease, in: Proceedings of the 23rd Italian Workshop on Neural
                      Networks (WIRN 2013), 2013.
                  [46] J. Dauwels, S. Kannan, Diagnosis of Alzheimer’s Disease using Electric Signals of the
                      Brain, A Grand Challenge, Asia-Pacific Biotech News 16 (10e11) (2012) 22e38.
                  [47] K. Dauwels, M.R. Srinivasan, T.V. Reddy, F.B. Musha, C. Latchoumane, C. Jeong,
                      Andrze, Slowing and loss of complexity in Alzheimer’s EEG: Two sides of the same
                      coin, Int. J. Alzheimer’s Disease 2011 (2011) 1e3.



                  FURTHER READING
                  [1] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical Evaluation of Gated Recurrent
                     Neural Networks on Sequence Modeling, arXiv preprint arXiv:14123555, 2014.
                  [2] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proc. Of the
                     14th Int.Conf. on Art. Int. and Statistics, vol. 15, 2011, pp. 315e323.
                  [3] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8)
                     (1997) 1735e1780.

                  [4] T. Mikolov, M. Karafia ´t, L. Burget, J. Cernocky ´, S. Khudanpur, Recurrent neural network
                     based language model, Interspeech 2 (2010) 3.
                  [5] Y. Zheng, Q. Liu, E. Chen, Y. Ge, J.L. Zhao, Exploiting multi-channels deep convolu-
                     tional neural networks for multivariate time series classification, Frontiers of Computer
                     Science 10 (1) (2016) 96e112.
                  [6] D. Ravi, C. Wong, B. Lo, G.-Z. Yang, A deep learning approach to on-node sensor data
                     analytics for mobile or wearable devices, IEEE Journal of Biomedical and Health
                     Informatics 21 (1) (2017) 56e64.
   247   248   249   250   251   252   253   254   255   256   257