Page 327 - Artificial Intelligence in the Age of Neural Networks and Brain Computing
P. 327

320    Index




                         Meaning vs. information, 282e284   MRI. See Magnetic resonance imaging (MRI)
                         Media guide, 107                   MTM. See Medium-term memory (MTM)
                         Medium-term memory (MTM), 45       Multichannel neurophysiological
                         MEG. See Magnetoencephalography (MEG)  measurements, 226
                         Memory, prediction vs., 284e287    Multilayer neural network, 18
                         Mental models, 87                  Multilayer perceptron (MLP), 220e221
                         Mesoscopic coupling, 213e214       Multimodal brain parcellation, 275
                         “Meta data”, 144                   Multimodal neuroimaging feature learning with
                         Metaanalysis, 266e267, 269             DL, 276e277
                         Metacognitive neurofuzzy inference system  Multiple faults, 256
                              (McFIS), 120                  Multistability, 210
                         Metaphorical Brain 2, 81            in physics and biology, 211e215, 213f
                         Metastable/metastability           Multivariate Gaussian random dataset, 21
                           behaviors, 211e213               Multiview genomic data integration methodology
                           in cognition and brain dynamics, 210e211, 212f  (MVDA methodology), 270e272, 271f
                           cognitive states, 211            Multiview learning, 265e269. See also Deep
                           patterns, 211, 215                   learning (DL)
                         MFE. See Minimum free energy (MFE)  analysis types, 269
                         Mild Cognitive Impairment (MCI), 236  in bioinformatics, 269e273
                         Mind, computational theory of, 83e84. See also  data integration taxonomy, 267f
                              Brain-mind-computer trichotomy  data type, 268
                         Minimal anatomies method, 33e34     deep multimodal feature learning, 275e277
                         Minimum free energy (MFE), 55e56, 60, 63e64  integration stage, 267e268, 268f
                           gradient descent, 70e74           multiview data related to clinical tests, 266f
                            unsupervised learning rule, 70e74  in neuroinformatics, 273e275
                         Minimum Helmholtz free energy. See Minimum  MVDA methodology. See Multiview genomic
                              free energy (MFE)                 data integration methodology (MVDA
                         Mirror neurons, 87                     methodology)
                         Misaligned objects, 285e286
                         MLCI. See Mouse-level computational  N
                              intelligence (MLCI)           NASA, 57
                         MLP. See Multilayer perceptron (MLP)  National Science Foundation of China (NSFC), 162
                         Model-free fault diagnosis systems, 254e256  Natural evolution, 116
                           research challenges, 256         Natural intelligence (NI), 56, 60e61
                         Modeling aspect, 256               Nature’s learning rule
                         Modular connectionist-based systems, 117  Adaline
                         Module chromosome, 297e298            and LMS algorithm, 3e5
                         Monitoring system, 257                unsupervised learning with, 5e6
                         Motor control, 194                  bootstrap learning
                         Motor theory of speech, 101           with more “biologically correct” sigmoidal
                         Mouse brain to human mind, 182e184     neuron, 13e20
                         Mouse-level computational intelligence  with sigmoidal neuron, 10e12
                              (MLCI), 179                    clustering algorithms, 20e21
                           from RNNs to                      Hebbian-LMS algorithm
                            deep vs. broad, 175e176            general, 21e22
                            emerging hardware to enhance capability by  nature’s, 26e27
                              orders of magnitude, 176e178     postulates and, 26
                            recurrent neural network, 172e175  trainable neural network incorporating,
                            roadmap for, 176                    27e29
                         MPD computing architecture. See Massively  postulates of synaptic plasticity, 25
                              parallel distributed computing architecture  Robert Lucky’s adaptive equalization, 7e10
                              (MPD computing architecture)   synapse, 22e25
   322   323   324   325   326   327   328   329   330   331   332