Page 688 - Automotive Engineering Powertrain Chassis System and Vehicle Body
P. 688

Interior noise: Assessment and control    C HAPTER 21.1


           or                                                 interest here, so it will be removed by algebraic manip-
                                                              ulation, that is:
                                 1
             L pd  ¼ L W1 þ 10 log 10  dB         (21.1.47)     4                 1
                                 S H                              ¼ 10 ½L p1  L wŠ=10                 (21.1.56)
                                                                R                 S 1
                                                    2
           where S H is the surface area of a hemisphere (m ).  4      ½L p2  L wŠ=10  1
             Now for a hemisphere                               R  ¼ 10                               (21.1.57)
                                                                                  S 2
                                 1    4
             L p1 ¼ L W1 þ 10 log 10  þ           (21.1.48)   Therefore,
                                 S H  R
                                                                              1                 1
                     1   4                                      10 ½L p1  L wŠ=10     ¼ 10 ½L p2  L wŠ=10     (21.1.58)
             10 log 10  þ    ¼ L p1   L W1        (21.1.49)                  S 1                S 2
                     S H  R
                                                                                            1   1
             1    4                                             10 ½L p1  L wŠ=10    10 ½L p2  L wŠ=10  ¼     (21.1.59)
               þ    ¼ 10 ½L p1  L W1Š=10          (21.1.50)                                 S 1  S 2
             S H  R
                                                                Multiply both sides by 10 L w/10 ,
             Now, it is known from equation (21.1.47) that:
                                                                                             1  1
                                 1                              10 L p1 =10    10 L p2 =10  ¼ 10 L w =10     (21.1.60)
             L pd  ¼ L W1 þ 10 log 10             (21.1.47)                                S 1
                                 S H                                                           S 2
           therefore,                                           Take logarithms on both sides,

                                 1                                      L p1 =10  L p2 =10  L w      1   1
             L W1 ¼ L pd    10 log 10             (21.1.51)     log 10 10      10       ¼    þ log 10
                                 S H                                                       10       S 1  S 2
                                                                                                      (21.1.61)
           so,
                                                                Multiply both sides by 10
             1    4
               þ    ¼ 10 ½L p1  ðL pd þlog 10 ð1=S H Þފ=10
             S H  R                                                       L p1 =10  L p2 =10           1   1
                                                                10log 10  10    10       ¼ L w þ10log 10
             1    4   10 ½L p1  L pdŠ=10                                                               S 1  S 2
               þ    ¼                                                                                 (21.1.62)
             S H  R   S H
                    h              i
             4    1    ½L p1  L pdŠ=10                        Now,
               ¼     10           1               (21.1.52)
             R   S H
                                                                10 log 10  10 L p1 =10    10 L p2 =10
             Now that the room constant is known, L p can be
           determined over a hemisphere around the sound sour-                L p2 =10    ðL p1  L p2Þ=10
           ce, and the sound power determined directly according  ¼ 10 log 10  10   10            1
           to:
                                                                               ðL p1  L p2Þ=10
                                1    4                          L p2 þ 10 log 10  10       1
             L w ¼ L p   10 log 10  þ             (21.1.53)
                               2pr 2  R
                                                                                  1   1
                                                                  ¼ L w þ 10 log 10                   (21.1.63)
             A third alternative way of determining sound power                  S 1  S 2
           levels involves obtaining the spatially averaged sound
           pressure levels L p1 and L p2 over two different hemi-  and finally
           spherical surfaces of areas S 1 and S 2 both of which have                1  1
           the acoustic source at their centres, that is:       L w ¼ L p2   10 log 10
                                                                                   S 1  S 2

                                1   4                                 þ 10 log  10 ðL p1  L p2Þ=10    1  (21.1.64)
             L p1 ¼ L w þ 10 log 10  þ            (21.1.54)                  10
                                S 1  R

                                1   4                           This equation can be used directly to determine the
             L p2 ¼ L w þ 10 log 10  þ            (21.1.55)
                                S 2  R                        sound power from a source when
                                                                                  N
             L w is to be determined. L p1 and L p2 are known,  L p1;2 ¼ 10 log  1  X  10 ðL pi =10Þ  dB  (21.1.65)
           measured quantities. The term 4/R is of no inherent               10  N
                                                                                 i ¼ 1

                                                                                                     699
   683   684   685   686   687   688   689   690   691   692   693