Page 320 - Autonomous Mobile Robots
P. 320

308                                    Autonomous Mobile Robots

                                8.3.1 Kinematics-Based Tracking Controller
                                The target performance of the vehicle tracking maneuvers can be specified by
                                a first-order system for the closed-loop output tracking error

                                                           ˙
                                                           ˜ z + λ˜z = 0                  (8.29)
                                where the convergence rate λ> 0 can be specified for a desired target
                                performance.
                                   Equation (8.29) can then be rewritten equivalently as

                                                           ˙ z =˙z d − λ˜z                (8.30)

                                   Time differentiation of (8.4) leads to

                                                      v + f d cos φ − fd( ˙ θ + ˙ φ) sin φ
                                                         ˙                        
                                            T
                                      ˙ z d = R (θ)   1 + f                             (8.31)
                                                               ˙
                                                      v tan γ + f d sin φ + fd( ˙ θ + ˙ φ) cos φ
                                                   2
                                   By substituting (8.6), (8.13), and (8.31) into (8.30), we have

                                                  E(θ, γ)µ = F kin (θ, v, γ , d, d, φ, ˙ φ)  (8.32)
                                                                        ˙
                                where

                                                              T
                                                                  ¯
                                                                           ˙
                                              F kin =˙z d − λ˜z = R (θ)F kin (v, γ , d, d, φ, ˙ φ)  (8.33)
                                with
                                                  v − λl cos pγ               ˙
                                                                
                                                                       T
                                      ¯
                                      F kin =   1 + f             + fR (φ)  d + λd      (8.34)
                                                  v tan γ − λl sin pγ       d( ˙ θ + ˙ φ)
                                               2
                                   Multiplying the orthogonal matrix R(θ) to both sides of (8.32) produces
                                                                      ˙
                                                            ¯
                                                    ¯
                                                    E(γ )µ = F kin (v, γ , d, d, φ, ˙ φ)  (8.35)
                                   With the parameters l and p chosen satisfying Lemma 8.2, the resultant
                                nonlinear kinematics-based controller can be obtained from (8.35) by using
                                (8.15) and (8.34)


                                                                         ˙
                                                              ¯
                                                        ¯
                                                 µ input = E −1 (γ )F kin v, γ , d, d, φ, ˙ φ    (8.36)

                                 © 2006 by Taylor & Francis Group, LLC



                                FRANKL: “dk6033_c008” — 2006/3/31 — 16:43 — page 308 — #14
   315   316   317   318   319   320   321   322   323   324   325