Page 323 - Autonomous Mobile Robots
P. 323
Unified Control Design for Autonomous Vehicle 311
Equation (8.42) can then be rewritten equivalently as
2
˙
¨ z =¨z d − 2ξλ˜z − λ ˜z (8.43)
Taking the differentiation of (8.13) yields
∂(Eµ)
¨ z = Gµ + E ˙µ = H(θ, γ)µ + E(θ, γ)u (8.44)
∂q
where
T
H(θ, γ) = R (θ)H(γ ) (8.45)
¯
and
1 + f l v
− tan γ ˙ θ − sin pγ
2 a cos γ
2
l
+ ( ˙ θ + pω) cos pγ −lp( ˙ θ + pω) cos pγ
¯
H(γ ) = a
l 1 + f l v
˙ θ − ( ˙ θ + pω) tan γ sin pγ + cos pγ
2
a 2 a cos γ
−lp( ˙ θ + pω) sin pγ
(8.46)
Subsequently, differentiation of (8.31) leads to
1 + f 2
˙v − a ˙ θ ¨ 2
T 2 + fR (φ) {d − d( ˙ θ + ˙ φ) }
T
1 + f ˙
¨ z d = R (θ)
{2d( ˙ θ + ˙ φ) + d( ¨ θ + ¨ φ)}
v ˙ θ + a ¨ θ
2
(8.47)
where
v tan γ
˙ θ = (8.48)
a
˙ v tan γ vω
¨ θ = + (8.49)
2
a a cos γ
Likewise, taking differentiation of ˜z in (8.6) yields
˙
T
˙ ˜ z = R (θ) −l( ˙ θ + pω) sin pγ − d cos φ + d( ˙ θ + ˙ φ) sin φ (8.50)
l( ˙ θ + pω) cos pγ − d sin φ − d( ˙ θ + ˙ φ) cos φ
˙
© 2006 by Taylor & Francis Group, LLC
FRANKL: “dk6033_c008” — 2006/3/31 — 16:43 — page 311 — #17