Page 324 - Autonomous Mobile Robots
P. 324

312                                    Autonomous Mobile Robots

                                                                                   ˙
                                   Having substituted ˜z in (8.6), ¨z in (8.44), ¨z d in (8.47), and ˜z in (8.50) into
                                (8.43), we obtain

                                                                        ˙ ¨
                                              E(θ, γ)u = F dyn (θ, v, ˙v, γ , ω, d, d, d, φ, ˙ φ, ¨ φ)  (8.51)

                                where

                                                                2
                                                            ˙
                                              F dyn =¨z d − 2ξλ˜z − λ ˜z − H(θ, γ)µ
                                                     T                 ˙ ¨
                                                         ¯
                                                  = R (θ)F dyn (v, ˙v, γ , ω, d, d, d, φ, ˙ φ, ¨ φ)  (8.52)
                                with

                                                                            2   2     
                                                 ˙ v                    ( ˙ θ + pω) − λ
                                                            T
                                     ¯
                                     F dyn =   1 + f    + lR (pγ)    vω               
                                                  ˙ v tan γ        −     2  − 2ξλ( ˙ θ + pω)
                                               2                     a cos γ
                                                                2           2
                                                     ¨
                                                     d + 2ξλd + λ d − d( ˙ θ + ˙ φ)
                                                            ˙
                                               T
                                           + fR (φ)                                       (8.53)
                                                                ˙
                                                    d( ¨ θ + ¨ φ) + 2(d + ξλd)( ˙ θ + ˙ φ)
                                   Multiplying the orthogonal matrix R(θ) to both sides of (8.51) produces
                                                                      ˙ ¨
                                                        ¯
                                                E(γ )u = F dyn (v, ˙v, γ , ω, d, d, d, φ, ˙ φ, ¨ φ)  (8.54)
                                                ¯
                                   Conditions that satisfy (8.39) for the look-ahead tracking mode or (8.40)
                                for the look-behind tracking mode guarantee that the decoupling matrices E(γ )
                                                                                           ¯
                                and E(θ, γ) are invertible. Under those conditions, the dynamics-based vehicle-
                                following controller can be achieved

                                                     −1                 ˙ ¨
                                                          ¯
                                             u input = E ¯  (γ )F dyn (v, ˙v, γ , ω, d, d, d, φ, ˙ φ, ¨ φ)  (8.55)
                                                    T
                                where u input =[u m  u s ] , with
                                                 cos(((1 + f )/2)γ )        2   2
                                       u m =˙v +                  {l[( ˙ θ + pω) − λ ]
                                               cos[(p − ((1 + f )/2))γ ]
                                                                      2
                                                          2
                                                      ˙
                                               ¨
                                           + f [d + 2ξλd + λ d − d( ˙ θ + ˙ φ) ] cos(pγ − φ)
                                                           ˙
                                           + f [d( ¨ θ + ¨ φ) + 2(d + ξλd)( ˙ θ + ˙ φ)] sin(pγ − φ)}  (8.56)

                                 © 2006 by Taylor & Francis Group, LLC



                                FRANKL: “dk6033_c008” — 2006/3/31 — 16:43 — page 312 — #18
   319   320   321   322   323   324   325   326   327   328   329