Page 117 - Basic Structured Grid Generation
P. 117

106  Basic Structured Grid Generation

                          The multisurface formula becomes
                                                     1 2
                                                 η − η             1 2
                                                                    η
                                    r(ξ, η) = r 1 +  2 1 2  (r 2 − r 1 ) +  2 1 2  (r 3 − r 2 )
                                                η 3 − η             η
                                                     2 3           2 3
                                            (η 3 − η)(2 − η 3 − η)  2η(η 3 − η)  η 2
                                          =                   r 1 +         r 2 +  r 3 .  (4.111)
                                                                    2
                                                η 3 (2 − η 3 )     η (2 − η 3 )  η 2
                                                                    3             3
                          Nowifwetakethe valueof η 3 to be very close to 1, this reduces (approximately)
                        to the interpolation formula:
                                                     2
                                                                             2
                                      r(ξ, η) = (1 − η) r 1 (ξ) + 2η(1 − η)r 2 (ξ) + η r 3 (ξ).  (4.112)
                          When n = 4 and there are two intermediate surfaces, a similar method involves
                        taking parameter values η 1 = 0, η 2 = a, η 3 = 1, and η 4 unspecified, with 0 <a < 1
                        and η 4 > 1. Then we can take second degree Lagrange polynomials
                                        1                     η(1 − η)        η(η − a)
                                   ψ 1 =  (a − η)(1 − η),  ψ 2 =      ,  ψ 3 =       .
                                        a                     a(1 − a)        (1 − a)
                        Equation (4.110) now yields the formula

                                              1 3   1       2
                                               η − (1 + a)η + aη
                                              3     2
                                                                    (r 2 − r 1 )
                                    r = r 1 +
                                              1 3   1       2
                                               η − (1 + a)η + aη 4
                                              3 4   2       4

                                           1 2   1 3             1 3   1  2
                                           2 η − η               3 η − aη
                                                 3
                                                                       2
                                                                            (r 4 − r 3 ).  (4.113)
                                        +            (r 3 − r 2 ) +
                                           1 2   1 3             1 3   1  2
                                                                  η − aη
                                            η − η
                                           2 4   3 4             3 4   2  4
                          Again, if we take η 4 to be very close to 1, this expression reduces (approximately)
                        to the formula:
                                                 2
                                                                               2
                                   r(ξ, η) = (1 − η) (1 − a 1 η)r 1 (ξ) + (2 + a 1 )η(1 − η) r 2 (ξ)
                                                                    2
                                              2
                                           +η (1 − η)(2 + a 2 )r 3 (ξ) + η (1 − a 2 + a 2 η)r 4 (ξ),  (4.114)
                        where
                                                      2               2
                                              a 1 =        and a 2 =      .               (4.115)
                                                   3a − 1           2 − 3a
                          Clearly we must avoid taking the values  1  or  2  for a.
                                                             3    3
                          Note that eqn (4.110) can also be applied in the trivial case where n = 2, when
                        there are no intermediate curves. Taking ψ 1 to be a constant then leads to simple
                        linear interpolation between inner and outer curves:
                                             r(ξ, η) = r 1 (ξ) + η{r 2 (ξ) − r 1 (ξ)}.    (4.116)
                        4.5.3 Numerical implementation
                        Here we describe briefly the numerical implementation of the above methods for the
                        case of an airfoil NACA-0012. The relevant programs, Two-boundary.f and Multisur-
                        face.f, are listed at Section 4.6.4 and may be found in the directory Book/tfi.gds on
   112   113   114   115   116   117   118   119   120   121   122