Page 104 - Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics
P. 104

Dynamics  of Inviscid  Fluids                                                                89


             the  relation                                         7

                                                     Bi  =O,  +  3

             from  where
                                        sin  2;  =  cos  @;,  cos  B;  =  —  sin  8;  .

              After  derivation  with  respect  to  the  normal  we  get


                               ly  =  [  (2;  =  23)  008 Bi  +  (yi  ~  vs)  Sin Bi  5
                                ayo                                                       j
                                        0          (x;  —  2;)”  +  (yi  —  yy)?


              where
                                   Ly  =  Xj  +  8;0080;,y;  =  Y;  +  5;  sin8;  .

                 By  replacement,  the  integral  becomes

                                                  [2  Cs;  +D
                                          lj  =
                                                   0    85 249As;+B


              where
                                  A=-—(%-  Xj)  cos  85  —                Y;)  sin 6; ,
                                          B=  (x;  — X;)°  gers
                                                  C= sin(6;  —  6;),
                                  D  =  —  (4;  —  Xj)  sin  0;  +  (yi — Y;)  cos 6; .

                 But  the  denominator  of  the  integrand  is  of  the  form


                                  (sj  +  A)?  +  B-  A®  = (sj; +  A)?  +E?  >0


              where
                                    E  =  (x;  —  Xj)  sin 8;  —  (yi;  —  Y;)  cos  6;

              thus,  consequently,


                                                                           2
                                                                            ie
                                     Ii  =  4 sin  (6;  —  8;)  In  f  4  teas
                                                                                                     (2.11)


                                —  cos  (6;  —  8;)  Jarctg  (5334)  —arctg  (4)|


                 By  using  the  system  (2.10),  with  the  introduction  of  the  dimensionless
                    .       .           ,                d;
              (undimensional)  variables  rj  =  577,  We  get

                                           m
                                           )   Ti5X5  =  sin  6;,2  =  1,....m
                                          j=l


             where  J;;  are  given  by  (2.11),  excepting  J;;  =  a  for  every  7.
   99   100   101   102   103   104   105   106   107   108   109