Page 107 - Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics
P. 107

92       BASICS  OF  FLUID  MECHANICS  AND  INTRODUCTION  TO  CFD


                 for  i1=1:2*n  for  j=1:2*n
                 if  j  “=i
                  =~(P(i,5)-P(j,1))*cos(P(j,7))-...

                 (P(i,6)-P(j,2))  *sin(P(j,7));
                 B=(P(i,5)-P(j,1))72+(P(i,6)-P(j,2))°2;
                 E=(P(i,5)-P(j,1))*sin(P(j,7))-...
                 (P(i,6)-P(j,2))*cos(P(j,7));
                 I(i,j)=1/2*sin(P(i,7)-P(j,7))*...
                 log (1+(P(j,8)72+2*A*P(j,8))/B)-...

                 cos(P(i,7)-P(j,7))*(atan((P(j /E)-atan(A/E));
                                                               ,8)+A)
                 Ip(i,j)#-1/2*cos(P(i,7)-P(j,7))*...
                 log(1+(P(j  ,8)~2+2*A*P(j,8))/B)-...
                 sin(P(i,7)-P(j,7))*(atan((P(j,8)+A)/E)-atan(A/E)) ;

                 else  1(i,i)=pi;Ip(i,i)=0;
                 end;
                 end;    end;
                 Lp=I\  sin(P(:,7));
                 VPU=cos(P(:  ,7))+Ip*Lp;  V=VPU*U;
                 cp=1-VPU.°2;
                 for  i=1:2*n  disp(Li  cp(i)  V(i)]);end;

                 for  1=1:2*n
                 plot3((P(i,5)  ,P(i,5)+eps],  [(P(i,6)  ,P(i,6)+eps]  ,  [0,cp(i)]);
                 set (gca,’view’,  [95,20]);
                 xlabel (‘x’)  ;ylabel  (‘y’)  ;zlabel  (/cp’)  ;hold  on;

                 end;
                                                          ,6);P(1,6)],zeros(2*n+1,1),’.’);
                                                    (PC:
                 plot3([P(:,5);P(1,5)],
                 plot3({P(:,5);P(1,5)],  (P(:,6);P(1,6)],...
                    -10*ones(2*n+1,1),’.’);
                 grid;
                 hold  off;

                 We  remark  the  low-pressure  region  between  the  two  cylinders.


             7.        Almost  Potential  Fluid  Flow

                 By  almost  (slightly)  potential flows,  we  understand  the  flows  in  which
             the  vorticity  is  concentrated  in  some  thin  layers  of  fluid,  being  zero  out-
             side  these  thin  layers,  and  there  is  a  mechanism  for  producing  vorticities
             near  boundaries.
                 For  such  models  the  Kutta—Joukovski  theorem  does  not  apply  and
             the  drag  may  be  different  from  zero,  which  means  one  can  avoid  the
             D’  Alembert  paradox.

                 There  are  many  situations  in  nature  or  in  engineering  where  the
             viscous  flows  can  be  considered,  in  an  acceptable  approximation,  as
   102   103   104   105   106   107   108   109   110   111   112