Page 168 - Biaxial Multiaxial Fatigue and Fracture
P. 168

Fatigue Limit of Ductile Metals  Under Multiaxial Loading   153

           Table 1. Coefficients AQ for the calculation of equivalent mean stresses, x = O,,,  y = Ora and z

           = 5ya

                                                 j
                    1          1                 2                3
                                                                         2
                        4x2+3y2-4xy+7z2   3x2+4y2-4xy+7z2   2x2+2y2-3~+3z
                    1
                                     2
                                                                        2
                                                                      3z
                                   32
                                              y2
                          x2 + y2 - xy i   x2 i - ry +32 2   x2 + y2 - xy i
                        7x2 + 7 y2 - 6xy + 86r2   10~z-6~~     -6xzi l0yz
                    2     2          2     x2 + y2 - xy i3z 2           2
                                                                y2
                          x  iy2-xy+3z                       x2 i -xy  + 32
                         5x2 + y2 i 2xy i 422   x2 + 5y2 + 2xy + 4z2   -k Y )z
                                                       2   3x2+3y2+2xy+4z 2
                            3y2
                        3x2 i + 2xy + 422   3x2 + 3y2 + 2xy + 42
                              1-
                   =xyad=w  0.8-

                            0.6-  130 test results

                            0.4-       steel (bending&torsion)
                                    0   steel (tension&torsion)
                            0.2 -      AI-alloy
                                 - equation
                                       ellipse
                              0         I       ,      I       1
                               0      0.2     0.4     0.6     0.8      1
                                                axad*w

           Fig. 3. Fatigue limit under alternating normal and shear stresses


             If one combines the eIIipticaI equation with coIIected test resuIts [25] to yield a standardised
           diagram, Fig. 3, Eq. (19) then agrees with the test results.
             For  the  case  of  an alternating  nom1 stress with  a superposed static shear stress, the
           fatigue limit is decreased by the superposed static shear stress, Fig. 4. Up to a static shear stress
           zVm which is lower than the yield strength RPo.2, the influence of the superposed shear stress is
           correctly described by the SIH. Beyond this value, however, the influence of  the superposed
           shear  stress  is  overestimated.  With  rxrm >  Rpo.2,  severe  plastic  deformations  occur;
           consequently,  this  case  is defined  by  a  static  strength design,  and  is of  no  importance for
           practical applications.
   163   164   165   166   167   168   169   170   171   172   173