Page 216 - Biaxial Multiaxial Fatigue and Fracture
P. 216

200                           L UGODA ET AL.

               timation under variable amplitude proportional tension with torsion leads to satisfactory
               results of calculations, in agreement with experimental ones.
            5.  The critical planes determined with use of the damage accumulation method agree with
               the fracture planes determined in experiments.


            ACKNOWLEDGEMENTS

            The paper was realized within the research project 7 T07B 018 18 and Polonium 2002 partly
            financed by the Polish State Research Committee in 2000-2002 and NATO Advanced Fellow-
            ships Programme 11512000.


            REFERENCES

            1.  Lagoda  T.  and  Macha  E.,  (1998)  A  review  of high-cycle  fatigue  models  under  non-
                proportional  loadings,  in:  Fracture  from  Defects,  Proc.  ECF-12,  Sheffield,  Eds.
                M.W.Brown, E.R. de 10s  Rios and K.J.Miller, EMAS, Vol. I, pp. 73-78
            2.   Macha E.,  (2001) A review of energy-based multiaxial fatigue failure criteria,  The Ar-
                chive ofMechanical Engirteering,  vol.XLVIII, No. 1, pp. 71 -1 01
            3.  Macha E. and Sonsino C.M., (2000) Energy criteria of multiaxial fatigue failure, Fatigue
                Fract. Engng Mater. Struct., Vol22, pp. 1053- 1070
            4.   Lagoda T. and Macha E., (1999) Assessment of long-life time under uniaxial and biaxial
                random  loading with energy parameter on the critical plane, Fatigue’99 Proc.  7th Znt.
                Fatigue Congress, Eds. X.-R.  Wu and Z.-G. Wang, EMAS, V01.11,  pp.965-970
            5.   Lagoda T., Macha E. and Bqdkowski W.,  (1999) A critical plane approach based on en-
                ergy concepts: application to biaxial random tension-compression high-cycle fatigue re-
                gime, Znt. J. Fatigue, v01.2 1, pp.43 1-443
            6.  Lagoda T. and Macha E.,  (2000) Generalization of energy-based multiaxial fatigue crite-
                ria  to  random  loading,  Multiawial  Fatigue  and Deformation: Testing and Prediction,
                ASTM STP  1397, S.Kalluri and P.J.Bonacuse, Eds., American Society for Testing and
                Materials, West Conshohocken, PA, pp. 173-1 90
            7.  Lagoda T., Macha E. and Sakane M., (1 998) Correlation of biaxial low-cycle fatigue lives
                of SUS304 stainless steel with energy parameter in critical plane at 923 K, 6th ZSCCP -
                Bialowieza, Eds. A.Jakowluk and Z.Mrbz, Technical University of Bialystok, pp.343-356
            8.  Lagoda T. and Macha E.,  (2001) Energy approach to fatigue life estimation under com-
                bined tension with torsion, Scientific Papers of the Technical University of Opole, 2.67,
                No 269/2001, Opole, (Poland), pp. 163-1 82
            9.  tagoda T., Macha E., Nieslony A. and Morel F.,  (2001) The energy approach to fatigue
                life of high strength steel under variable-amplitude tension with torsion, Proc. ofthe 6th
                ICBMFF, Lisbon, Ed. Manuel Moreira de Freitas, vol.1, pp.233-240
            10.  Lagoda T., (2001) Energy models for fatigue life estimation under random loading - Part
                I - The model elaboration,  Znt.J. Fatigue, vo1.23, No 6, pp.467-480
   211   212   213   214   215   216   217   218   219   220   221