Page 235 - Biaxial Multiaxial Fatigue and Fracture
P. 235
Critical Plane-Energy Based Approach for Assessment of Biaxial Fatigue Damage where ... 219
on Methods for Predicting Materials Life in Fatigue. New York: American Society of
Mechanical Engineers, 247-263.
6. Garud, Y.S. (1981), A new approach to the evaluation of fatigue under multiaxial
loadings. J Engng Mater Tech. Transaction of the ASME, 103, 118-125.
7. Ellyin, F. and Kujawski, F. (1993), In: Advances in Multiaxial fatigue. ASTM STP
1191. McDowell, D.L., and Ellis, R., (Eds), Philadelphia: American Society for Testing
and Materials, 55-66.
8. Ellyin, F., Golos, K., and Xia, Z. (1991), In-phase and Out-of-phase Multiaxial Fatigue.
J Engng Mater Tech. 113,411-416.
9. Brown, M.W. and Miller, K.J. (1973) A theory for fatigue under multiaxial stress-strain
conditions. Proc Inst Mech Eng. 187,745-755.
10. Findley, W.N. (1959), A theory for the effect of mean stress on fatigue of metals under
combined torsion and axial load or bending. J Engng Ind. 301-306.
11. Flavenot, J.F. and Skalli, N. (1989) A critical depth criterion for evaluation of long life
fatigue strength under multiaxial loadings and stress gradient. In: Brown, M.W. and
Miller, K.J. (Eds). Biaxial and Multiaxial Fatigue. London: ESIS Publication no. EGF3,
355-365.
12. Stulen, F.B., and Cummings, H.N. (1954), Proc. ASTM, 54,822-835.
13. Carpinteri, A., and Spagnoli, A. (2001), Multiaxial high-cycle fatigue criterion for hard
metals. Int. J. Fatigue, 23 (2), 135-145.
14. Liu, K.C. (1993) A method based on virtual strain-energy parameters for multiaxial
fatigue. In: McDowell, D.L.and Ellis, R., (Eds). ASTM STP 1191. Philadelphia:
American Society for Testing and Materials, 67-84.
15. Chu, C.C., Conle, F.A. and Bonnen, J.F. (1993) Multiaxial stress-strain modeling and
fatigue life prediction of SAE axle shafts. In: McDowell, D.L. and Ellis, R, (Eds).
ASTM STP 1191. Philadelphia: American Society for Testing and Materials, 37-54.
16. Glinka, G., Shen, G., and Plumtree, A. (1995) A multiaxial fatigue strain energy
density parameter related to the critical plane. Fatigue Fract Engng Mater Struct. 18,
37-46.
17. Varvani-Farahani, A. (2000) A new energy-critical plane parameter for fatigue life
assessment of various metallic materials subjected to in-phase and out-of-phase
multiaxial fatigue loading conditions, ht. J. Fatigue, 22,295-305.
18. Macha, E. and Sonsino, C. M. (1999) Energy criterion of multiaxial fatigue failure,
Fatigue Fract Engng Mater Struct, 22, 1053-1070.
19. Mroz, Z. (1967) On the description of anisotropic workhardening, J.Mech. Phys. Solids,
15, 163-175.
20. McDiarmid, D.L. (1985) Fatigue under out-of-phase biaxial stresses of different
frequencies. In: Miller, K.J. and Brown, M.W., (Eds). Multiaxial Fatigue, ASTM STP
853 Philadelphia: American Society for Testing and Materials, 606-621.
21. McDiarmid, D.L. (1989) The effect of mean stress on biaxial fatigue where the stresses
are out-of-phase and at different frequencies. In: Brown, M.W. and Miller, K.J., (Eds).
Biaxial and Multiaxial Fatigue, EGF3. London, 605-619.
22. McDiarmid, D.L. (1991) Mean stress effects in biaxial fatigue where the stresses are
out-of-phase and at different frequencies. ESIS 10, Kussmual, K., McDiarmid, D. and
Socie, D. (Eds), London, 321-335.
23. Varvani-Farahani, A. and Topper, T.H. (2000) A new multiaxial fatigue life and crack
growth rate model for various in-phase and out-of-phase strain paths. In: Kalluri, S. and
Bonacuse, P.J. (Eds). Multiaxial Fatigue Deformation: Testing and Prediction, ASTM
STP 1387. Philadelphia: American Society for Testing and Materials, 305-322.