Page 236 - Biaxial Multiaxial Fatigue and Fracture
P. 236

220                         A. VARVANI-FARAHANI


             24.   Varvani-Farahani, A., and Topper, T. H. (2000) A new energy-based multiaxial fatigue
                   parameter, Fatigue 2000: Fatigue and Durability Assessment of Materials, Components
                   and  Structures,  4'h  International  Conference  of  the  engineering  Integrity  Society,
                   University of Cambridge, UK, 313-332.
             25.   Tipton, S.M.  (1984) Fatigue behavior under multiaxial loading in  the presence of  a
                   notch: methodologies for the prediction of life to crack initiation and life spent in crack
                   propagation, Ph. D. thesis, Mechanical Engineering Department, Satnford University,
                   Stanford, CA.
             26.   Andrews,  R.M.  (1986)  High  temperature  fatigue  of  AIS1  316  stainless  steel  under
                   complex biaxial loading, Ph.D. thesis, University of Sheffield, UK.
             27.   Socie, D. (1987) Multiaxial fatigue damage models. J  Eng  Mater Technol, 109, 293-
                   298.
             28.   Socie, D.  and Marquis G, Multiaxial Fatigue, Society of  Automotive Engineers SAE
                   International, 2000.
             29.   Kanazawa, K, Miiler, K.J.,  and Brown, M.W.  (1979) Cyclic deformation of  1% Cr-Mo-
                   V steel under out-of-phase loads. Fatigue Eng Mater and Struct.  2,217-228.
             30.   Sines, G. (1961) The prediction of  fatigue fracture under combined stresses at stress
                   concentrations. Bull Jpn SOC Mech Eng. 4( 15), 443-453.
             31.   Smith, J.O. (1942) Effect of range of stress on fatigue strength of metals. University of
                   Illinois, Engineering Experiment Station, Bul no. 334,39(26).
             32.   Bergmann J.,  Nee, S. and Seeger, T. (1977) Effect of mean strain and mean stress on
                   the  cyclic stress-strain and fracture behavior of  steel StE70. Materialpruefung  19( l),
                   10-17.
             33.   Fatemi, A. and Socie, D. (1988) A critical plane approach to multiaxial fatigue damage
                   including out-of-phase loading. Fatigue Fract Engng Mater Struct, 11,149- 165.
             34.   Au, P., Topper, T.H., and El Haddad, M., (1982) The effect of compressive load on the
                   threshold stress intensity for short cracks, AGARD Conference Proceedings No.328, In:
                   Behavior of Short Cracks in Airframe Components, Toronto, Canada, 19-24.
              35.   Yu, M.T., Topper, T.H., and Au, P. (1984) The effects of stress ratio, compressive load
                   and  underload  on  threshold behavior  of  a  2024-T351 aluminum alloy, proceedings,
                   Fatigue 84 (C.J. Beevers Ed.), Vol.1, 179-190.
              36.   Yu, M.T. and Topper, T.H. (1985) The effects of  materials strength, stress ratio and
                   compressive overload on the threshold behavior of a SAE 1045 steel, ASTM Journal of
                   Engineering Materials and Technology, 107, 19-25.
              37.   DuQuesnay,  D.L.,  Pompetzki,  M.A.,  Topper, T.H.,  at?d Yu, M.T.  (1988) Effects  of
                   compression  and  compressive  overloads  on  the  fatigue  behavior  of  a  2024-T35 1
                   aluminum alloy and a SAE 1045 steel, ASTM STP 942, (H.D. Solomon, G.R. Halford,
                   L.R.  Kaisand  and  B.N.Leis,  Eds)  American  Society  for  Testing  and  Materials,
                   Philadelphia, 173- 183.
              38.   Varvani-Farahani, A.  and Topper, T.H.  (1997) Crack growth and closure mechanisms
                   of  shear cracks under constant amplitude biaxial  straining and  periodic compressive
                   overstraining in 1045 steel, Znt. J. Fatigue, 9(7), 589-596.
   231   232   233   234   235   236   237   238   239   240   241