Page 376 - Biaxial Multiaxial Fatigue and Fracture
P. 376
360 C. CALt R. CITARELLA AND M. PERRELU
and efficiency of the methodology adopted, because, apart from the accuracy typical of the
Boundary Element Method applied to fracture mechanics, the three dimensional crack
propagation proceed in a fully automatic way.
REFERENCES
1. Riddell, W.T., Ingraffea, A.R., Wawrzynek, P.A. (1997), Experimental observations and
numerical predictions of three-dimensional fatigue crack propagation, Engineering
Fracture Mechanics, 58,293-3 10.
2. Schijve, J. (1998), Fatigue Specimens for Sheet and Plate Material, Fatigue & Fracture of
Engineering Materials & Structures, 21, 347-358.
3. Hsien Yang Yeh, Chang H. Kim (1995), Fracture Mechanics of the Angled Elliptic Crack
under Uniaxial Tension, Engineering Fracture Mechanics, 50, 103-1 10.
4. Fawaz, S. A. (1997), Fatigue Crack Growth in Riveted Joints, MSc Thesis, Air Force
Institute of Technology, Ohio.
5. Apicella, A., Citarella, R., Esposito, R. (1994), Sulla previsione della propagazione per
fatica di cricche multiple tramite elementi di contorno discontinui, Proceedings of the 261d
AIAS national conference, Italy.
6. Apicella, A., Amentani, E., Cali, C., Citarella, R., Soprano, A. (1999), Crack propagation
in Multi Site Damage conditions for a riveted joint, Proc. of International Conference
AMME 99, Poland.
z Apicella, A., Citarella, R., Esposito, R., Cariello, G. (1997), Crack problems by
FEMBEM coupled procedures, The Int. Journal of Boundary Element Methods, 8,22Z229.
8. Apicella, A., Citarella, R., Esposito, R., Soprano, A. (1998), Some SIF’s evaluations by
Dual BEM for 3D cracked plates, Proceedings of the International Conference AMME,
Poland.
9. Apicella, A,, Citarella, R., Soprano, A. (1999), 3D stress intensity factor evaluation by
Dual BEM, Conference proceedings “Fracture and Damage Mechanics”, UK.
10. Beasy User Guide, Computational Mechanics Beasy, Southampton, England, 1994.
11. Mi,Y., Aliabadi, M.H. (1992), Dual Boundary Element Method for Three Dimensional
Fracture Mechanics Analysis, Engineering Analysis with Boundary Elements, 10,161-171.
12. Mi,Y., Aliabadi, M.H. (1994), Three-dimensional crack growth simulation using BEM,
Computers & Structures, Computers & Structures, 52. 87 1-878.
13. Mi,Y., (1996), Three-dimensional analysis of crack growth, Topics in Engineering, 28,
Computational Mechanics Publ., Southampton, U.K.
14. Irwin, G.R., (1957), Analysis of stresses and strains near the end of a crack traversing a
plate, Trans. ASME J. Appl. Mech., 24, 361-364.
15. Aliabadi, M.H., Rooke, D.P. (1991), Solid Mechanics and its applications, 8,
Computational Mechanics Publ ., Southampton, U.K..
16. Dhondt, G., Chergui. A., Buchholz, F.-G. (2001), Computational fracture analysis of
different specimens regarding 3D and mode coupling effects, Engineering Fracture
Mechanics, 68,383-401.
17. He, M.Y., Hutchinson, J.W. (2000), Surface crack subject to mixed mode loading,
Engineering Fracture Mechanics, 65, 1 - 14.
IS. Sih, G.C., Cha, B.C.K. (1974). Journal of Engineering Fracture Mechanics, 6,699-732.
19. Forman, R.G., Shivakumar, V., Newman, J.C., (1993), Fatigue Crack Growth Computer
Program “NASMLAGRO’ Version 2.0, National Aeronautics and Space
Administration Lyndon B. Johson Space Center, Houston, Texas.
20. Paris, P.C., (1962). PhD. Thesis, Lehigh University, Bethlehem.