Page 272 - Big Data Analytics for Intelligent Healthcare Management
P. 272
REFERENCES 265
[13] H. Das, B. Naik, H.S. Behera, Classification of diabetes mellitus disease (DMD): A data mining (DM) ap-
proach, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 539–549.
[14] B.S.P. Mishra, H. Das, S. Dehuri, A.K. Jagadev, Cloud Computing for Optimization: Foundations, Applica-
tions, and Challenges, vol. 39, Springer, 2018.
[15] P. Sarkhel, H. Das, L.K. Vashishtha, Task-scheduling algorithms in cloud environment, in: Computational
Intelligence in Data Mining, Springer, Singapore, 2017, pp. 553–562.
[16] G. Tsoumakas, I. Vlahavas, Distributed Data Mining in Database Technologies: Concepts, Methodologies,
Tools, and Applications, IGI Global, 2009, pp. 157–164.
[17] H. Das, A.K. Jena, J. Nayak, B. Naik, H.S. Behera, A novel PSO based back propagation learning-MLP
(PSO-BP-MLP) for classification, in: Computational Intelligence in Data Mining, 2 Springer, New Delhi,
2015, pp. 461–471.
[18] O.J. Muensterer, M. Lacher, C. Zoeller, M. Bronstein, J. K€ ubler, Google glass in pediatric surgery:
an exploratory study, Int. J. Surg. Case Rep. 12 (4) (2014) 281–289.
[19] P. Wicks, M. Little, The virtuous circle of the quantified self: A human computational approach to improved
health outcomes, in: Handbook of Human Computation, Springer, New York, NY, 2013, pp. 105–129.
[20] M.A. Barrett, O. Humblet, R.A. Hiatt, N.E. Adler, Big data and disease prevention: from quantified self to
quantified communities, Big Data 1 (3) (2013) 168–175.
[21] A.E. Hassanien, N. Dey, S. Borra, Medical Big Data and Internet of Medical Things: Advances, Challenges
and Applications, Taylor & Francis, 2019.
[22] E.P. Whitlock, C.T. Orleans, N. Pender, J. Allan, Evaluating primary care behavioral counseling interven-
tions: an evidence-based approach 1, Am. J. Prev. 22 (4) (2002) 267–284.
[23] P. Groves, B. Kayyali, D. Knott, S. Van Kuiken, The ‘big data’ revolution in healthcare, McKinsey Q. 2 (3)
(2013) 1–19.
[24] J.S. Rumsfeld, K.E. Joynt, T.M. Maddox, Big data analytics to improve cardiovascular care: promise and
challenges, Nat. Rev. Cardiol. 13 (6) (2016) 350.
[25] N. Dey, C. Bhatt, A.S. Ashour, Big Data for Remote Sensing: Visualization, Analysis and Interpretation,
Springer, 2018.
[26] N. Dey, A.E. Hassanien, C. Bhatt, A.S. Ashour, S.C. Satapathy, Internet of Things and Big Data Analytics
Toward Next-Generation Intelligence, Springer International Publishing, 2018.
[27] C. Bhatt, N. Dey, A.S. Ashour, Internet of Things and Big Data Technologies for Next Generation Health-
care, Springer International Publishing, 2017.
[28] M. Stonebraker, G. Kemnitz, The postgres next generation database management system, Commun. ACM
34 (10) (1991) 78–92.
[29] E.L. Van Dijk, H. Auger, Y. Jaszczyszyn, C. Thermes, Ten years of next-generation sequencing technology,
Trends Genet. 30 (9) (2014) 418–426.
[30] J.R. Miller, S. Koren, G. Sutton, Assembly algorithms for next-generation sequencing data, Genomics 95 (6)
(2010) 315–327.
[31] L. Solieri, T.C. Dakal, P. Giudici, Next-generation sequencing and its potential impact on food microbial
genomics, Ann. Microbiol. 63 (1) (2013) 21–37.
[32] M.S. Kamal, S. Parvin, A.S. Ashour, F. Shi, N. Dey, De-Bruijn graph with MapReduce framework towards
metagenomic data classification, Int. J. Inf. Technol. 9 (2017) 59–75.
[33] B.J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P.D. Blood, J. Bowden, M.
B. Couger, D. Eccles, B. Li, M. Lieber, M.D. MacManes, De novo transcript sequence reconstruction from
RNA-seq using the Trinity platform for reference generation and analysis, Nat. Protoc. 8 (8) (2013) 1494.
[34] D. Botstein, N. Risch, Discovering genotypes underlying human phenotypes: past successes for mendelian
disease, future approaches for complex disease, Nat. Genet. 33 (2003) 228.
[35] F. Ozsolak, P.M. Milos, RNA sequencing: advances, challenges and opportunities, Nat. Rev. Genet. 12 (2)
(2011) 87.