Page 65 - Big Data Analytics for Intelligent Healthcare Management
P. 65

FURTHER READING         57




               [27] C. McGregor, Big data in neonatal intensive care, Computer 46 (6) (2013) 54–59.
               [28] M. Fahim, M. Idris, R. Ali, C. Nugent, B. Kang, E.N. Huh, S. Lee, ATHENA: a personalized platform to
                   promote an active lifestyle and wellbeing based on physical, mental and social health primitives, Sensors
                   14 (5) (2014) 9313–9329.
               [29] H. Das, B. Naik, H.S. Behera, Classification of diabetes mellitus disease (DMD): A data mining (DM)
                   approach, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018, pp. 539–549.
               [30] H. Das, A.K. Jena, J. Nayak, B. Naik, H.S. Behera, A novel PSO based back propagation learning-MLP
                   (PSO-BP-MLP) for classification, in: Computational Intelligence in Data Mining, vol. 2, Springer, New
                   Delhi, 2015, pp. 461–471.
               [31] M.S. Kamal, S. Parvin, A.S. Ashour, et al., De-Bruijn graph with MapReduce framework towards metage-
                   nomic data classification, Int. J. Inf. Tecnol. 9 (2017) 59, https://doi.org/10.1007/s41870-017-0005-z.
               [32] C. Pradhan, H. Das, B. Naik, N. Dey, Handbook of Research on Information Security in Biomedical Signal
                   Processing, IGI Global, Hershey, PA, 2018, pp. 1–414, https://doi.org/10.4018/978-1-5225-5152-2.
               [33] R. Sahani, C. Rout, J.C. Badajena, A.K. Jena, H. Das, Classification of intrusion detection using data min-
                   ing techniques, in: Progress in Computing, Analytics and Networking, Springer, Singapore, 2018,
                   pp. 753–764.
               [34] A.E. Hassanien, N. Dey, S. Borra (Eds.), Medical Big Data and Internet of Medical Things: Advances, Chal-
                   lenges and Applications, Taylor & Francis, 2019.
               [35] W. Raghupathi, V. Raghupathi, Big data analytics in healthcare: promise and potential, Health Inf. Sci. Syst.
                   2 (1) (2014) 3.
               [36] R. Sonnati, Improving healthcare using big data analytics, Int. J. Sci. Technol. Res. 4 (8) (2015) 142–146.
               [37] M. Cottle, W. Hoover, S. Kanwal, M. Kohn, T. Strome, N. Treister, Transforming Health Care Through Big
                   Data Strategies for Leveraging Big Data in the Health Care Industry, Institute for Health Technology Trans-
                   formation, 2013. http://ihealthtran.com/big-data-in-healthcare.
               [38] M.K. Muchahari, S.K. Sinha, Reputation-based trust for selection of trustworthy cloud service providers,
                   in: Proceedings of the International Conference on Computing and Communication Systems, Springer,
                   Singapore, 2018, pp. 65–74.
               [39] H.A. Al Hamid, S.M.M. Rahman, M.S. Hossain, A. Almogren, A. Alamri, A security model for preserving
                   the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryp-
                   tography, IEEE Access 5 (2017) 22313–22328.




               FURTHER READING
               Big Data in Healthcare Market Value Share of 20.69% With Cerner Co, Cognizant, Dell, Philips, Siemens and
               Business Forecast to 2022, Retrieved from: https://www.medgadget.com/2018/04/big-data-in-healthcare-
               market-value-share-of-20-69-with-cerner-co-cognizant-dell-philips-siemens-and-business-forecast-to-2022.html,
               2018.
               H. Chen, R.H. Chiang, V.C. Storey, Business intelligence and analytics: from big data to big impact, MIS Q.
               36 (2012) 1165–1188.
               R. Elliott, P. Morss, Big Data: How It Can Improve Our HealthjElliott Morss, Retrieved from: http://www.
               morssglobalfinance.com/big-data-how-it-can-improve-our-health/, 2018.
   60   61   62   63   64   65   66   67   68   69   70