Page 24 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 24
References 21
[25] G. Szekeres, Z. Battyani, Immuno-diagnosis of malignant melanoma, Magy Onkol. 47
(1) (2003) 45–50.
[26] W.B. Coley, The treatment of inoperable sarcoma by bacterial toxins (the Mixed Toxins
of the Streptococcus erysipelas and the Bacillus prodigiosus), Proc. R. Soc. Med. 3 (Surg
Sect) (1910) 1–48.
[27] W.J. Lesterhuis, J.B. Haanen, C.J. Punt, Cancer immunotherapy—revisited, Nat. Rev.
Drug Discov. 10 (8) (2011) 591–600.
[28] P.S. Moore, Y. Chang, Why do viruses cause cancer? Highlights of the first century of
human tumour virology, Nat. Rev. Cancer 10 (12) (2010) 878–889.
[29] H.L. Kaufman, D.W. Kim, G. DeRaffele, J. Mitcham, R.S. Coffi n, S. Kim-Schulze, Lo-
cal and distant immunity induced by intralesional vaccination with an oncolytic herpes
virus encoding GM-CSF in patients with stage IIIc and IV melanoma, Ann. Surg. Oncol.
17 (3) (2010) 718–730.
[30] K.S. Peggs, S.A. Quezada, C.A. Chambers, A.J. Korman, J.P. Allison, Blockade of
CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor
activity of anti-CTLA-4 antibodies, J. Exp. Med. 206 (8) (2009) 1717–1725.
[31] A. van Elsas, A.A. Hurwitz, J.P. Allison, Combination immunotherapy of B16 melanoma
using anticytotoxic T lymphocyte-associated antigen 4 (CTLA4) and granulocyte/macro-
phage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of sub-
cutaneous and metastatic tumors accompanied by autoimmune depigmentation, J. Exp.
Med. 190 (3) (1999) 355–366.
[32] W. Zou, L. Chen, Inhibitory B7-family molecules in the tumor microenvironment, Nat.
Rev. Immunol. 8 (6) (2008) 467–477.
[33] R.H. Thompson, S.M. Kuntz, B.C. Leibovich, H. Dong, C.M. Lohse, W.S. Webster, et al.
Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with
long-term follow-up, Cancer Res. 66 (7) (2006) 3381–3385.
[34] J. Dannull, Z. Su, D. Rizzieri, B.K. Yang, D. Coleman, D. Yancey, et al. Enhancement of
vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T
cells, J. Clin. Invest. 115 (12) (2005) 3623–3633.
[35] M.E. Dudley, J.R. Wunderlich, P.F. Robbins, J.C. Yang, P. Hwu, D.J. Schwartzentruber,
et al. Cancer regression and autoimmunity in patients after clonal repopulation with anti-
tumor lymphocytes, Science 298 (5594) (2002) 850–854.
[36] M. Obeid, A. Tesniere, F. Ghiringhelli, G.M. Fimia, L. Apetoh, J.L. Perfettini, et al. Calreticu-
lin exposure dictates the immunogenicity of cancer cell death, Nat. Med. 13 (1) (2007) 54–61.
[37] W.J. Lesterhuis, I.J. de Vries, E.A. Aarntzen, A. De Boer, N.M. Scharenborg, M. Van de
Rakt, et al. A pilot study on the immunogenicity of dendritic cell vaccination during ad-
juvant oxaliplatin/capecitabine chemotherapy in colon cancer patients, Br. J. Cancer 103
(9) (2010) 1415–1421.
[38] M.H. Den Brok, R.P. Sutmuller, R. Van der Voort, E.J. Bennink, C.G. Figdor, T.J. Ruers,
et al. In situ tumor ablation creates an antigen source for the generation of antitumor im-
munity, Cancer Res. 64 (11) (2004) 4024–4029.
[39] P.M. Brickell, D.S. Latchman, D. Murphy, K. Willison, P.W. Rigby, Activation of a Qa/
Tla class I major histocompatibility antigen gene is a general feature of oncogenesis in
the mouse, Nature 306 (5945) (1983) 756–760.
[40] H.D. Shukla, Comprehensive analysis of cancer-proteogenome to identify biomarkers for
the early diagnosis and prognosis of cancer, Proteomes 5 (4) (2017) 28.
[41] Shruthi, B.S., Vinodhkumar, P., & Selvamani. (2016). Proteomics: A new perspective for
cancer. Adv. Biomed. Res., 5, 67.