Page 249 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 249
248 CHAPTER 9 Application of microfluidics in cancer treatment
[54] J.S. Jeon, I.K. Zervantonakis, S. Chung, R.D. Kamm, J.L. Charest, In vitro model of
tumor cell extravasation, PLoS ONE 8 (2) (2013) e56910.
[55] R. Riahi, Y.L. Yang, H. Kim, L. Jiang, P.K. Wong, Y. Zohar, A microfluidic model for
organ-specific extravasation of circulating tumor cells, Biomicrofluidics 8 (2) (2014)
024103.
[56] I.J. Fidler, The pathogenesis of cancer metastasis: the’seed and soil’hypothesis revisited,
Nat. Rev. Cancer 3 (6) (2003) 453.
[57] K.H. Benam, S. Dauth, B. Hassell, A. Herland, A. Jain, K.J. Jang, et al. Engineered in
vitro disease models, Annu. Rev. Pathol. 10 (2015) 195–262.
[58] S. Turcotte, S.A. Rosenberg, Immunotherapy for metastatic solid cancers, Adv. Surg. 45
(1) (2011) 341–360.
[59] S. Kannan, N. Venugopal, Current trends in microfluidics for single cell isolation in can-
cer diagnostics enabling downstream proteomics applications, MOJ Proteomics Bioin-
form. 3 (4) (2016) 98-L106.
[60] M.J. Markuszewski, R. Kaliszan, Using bioanalysis for cancer diagnosis and prognosis,
Bioanalysis 6 (7) (2014) 907–909.
[61] C. Bayarri-Lara, F.G. Ortega, A.C.L. de Guevara, J.L. Puche, J.R. Zafra, D. de Miguel-
Pérez, et al. Circulating tumor cells identify early recurrence in patients with non-small
cell lung cancer undergoing radical resection, PLoS ONE 11 (2) (2016) e0148659.
[62] X. Ren, B.M. Foster, P. Ghassemi, J.S. Strobl, B.A. Kerr, M. Agah, Entrapment of pros-
tate cancer circulating tumor cells with a sequential size-based microfluidic chip, Anal.
Chem. 90 (12) (2018) 7526–7534.
[63] F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R. Gascoyne, Separation of
human breast cancer cells from blood by differential dielectric affinity, Proc. Natl. Acad.
Sci. 92 (3) (1995) 860–864.
[64] P.R. Gascoyne, J. Noshari, T.J. Anderson, F.F. Becker, Isolation of rare cells from cell
mixtures by dielectrophoresis, Electrophoresis 30 (8) (2009) 1388–1398.
[65] P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, T. Laurell, Microfluidic, label-free
enrichment of prostate cancer cells in blood based on acoustophoresis, Anal. Chem. 84
(18) (2012) 7954–7962.
[66] A.H. Yang, H.T. Soh, Acoustophoretic sorting of viable mammalian cells in a microflu-
idic device, Anal. Chem. 84 (24) (2012) 10756–10762.
[67] S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R. Gascoyne, Dielectrophoresis has
broad applicability to marker-free isolation of tumor cells from blood by microfluidic
systems, Biomicrofluidics 7 (1) (2013) 011808.
[68] S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R. Gascoyne, Dielectrophoresis has
broad applicability to marker-free isolation of tumor cells from blood by microfluidic
systems, Biomicrofluidics 7 (1) (2013) 011807.
[69] A.F. Sarioglu, N. Aceto, N. Kojic, M.C. Donaldson, M. Zeinali, B. Hamza, et al. A mi-
crofluidic device for label-free, physical capture of circulating tumor cell clusters, Nat.
Methods 12 (7) (2015) 685.
[70] H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, Devel-
opment of a rare cell fractionation device: application for cancer detection, IEEE Trans.
Nanobiosci. 3 (4) (2004) 251–256.
[71] S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R.J. Cote, et al. Membrane microfilter de-
vice for selective capture, electrolysis and genomic analysis of human circulating tumor
cells, J. Chromatogr. A 1162 (2) (2007) 154–161.