Page 249 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 249

248    CHAPTER 9  Application of microfluidics in cancer treatment




                         [54] J.S. Jeon, I.K. Zervantonakis, S. Chung, R.D. Kamm, J.L. Charest, In vitro model of
                             tumor cell extravasation, PLoS ONE 8 (2) (2013) e56910.
                         [55] R. Riahi, Y.L. Yang, H. Kim, L. Jiang, P.K. Wong, Y. Zohar, A microfluidic model for
                             organ-specific extravasation of circulating tumor cells, Biomicrofluidics 8 (2) (2014)
                             024103.
                         [56] I.J. Fidler, The pathogenesis of cancer metastasis: the’seed and soil’hypothesis revisited,
                             Nat. Rev. Cancer 3 (6) (2003) 453.
                         [57] K.H. Benam, S. Dauth, B. Hassell, A. Herland, A. Jain, K.J. Jang, et al. Engineered in
                             vitro disease models, Annu. Rev. Pathol. 10 (2015) 195–262.
                         [58] S. Turcotte, S.A. Rosenberg, Immunotherapy for metastatic solid cancers, Adv. Surg. 45
                             (1) (2011) 341–360.
                         [59] S. Kannan, N. Venugopal, Current trends in microfluidics for single cell isolation in can-
                             cer diagnostics enabling downstream proteomics applications, MOJ Proteomics Bioin-
                             form. 3 (4) (2016) 98-L106.
                         [60] M.J. Markuszewski, R. Kaliszan, Using bioanalysis for cancer diagnosis and prognosis,
                             Bioanalysis 6 (7) (2014) 907–909.
                         [61] C. Bayarri-Lara, F.G. Ortega, A.C.L. de Guevara, J.L. Puche, J.R. Zafra, D. de Miguel-
                             Pérez, et al. Circulating tumor cells identify early recurrence in patients with non-small
                             cell lung cancer undergoing radical resection, PLoS ONE 11 (2) (2016) e0148659.
                         [62] X. Ren, B.M. Foster, P. Ghassemi, J.S. Strobl, B.A. Kerr, M. Agah, Entrapment of pros-
                             tate cancer circulating tumor cells with a sequential size-based microfluidic chip, Anal.
                             Chem. 90 (12) (2018) 7526–7534.
                         [63] F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R. Gascoyne, Separation of
                             human breast cancer cells from blood by differential dielectric affinity, Proc. Natl. Acad.
                             Sci. 92 (3) (1995) 860–864.
                         [64] P.R. Gascoyne, J. Noshari, T.J. Anderson, F.F. Becker, Isolation of rare cells from cell
                             mixtures by dielectrophoresis, Electrophoresis 30 (8) (2009) 1388–1398.
                         [65] P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, T. Laurell, Microfluidic, label-free
                             enrichment of prostate cancer cells in blood based on acoustophoresis, Anal. Chem. 84
                             (18) (2012) 7954–7962.
                         [66] A.H. Yang, H.T. Soh, Acoustophoretic sorting of viable mammalian cells in a microflu-
                             idic device, Anal. Chem. 84 (24) (2012) 10756–10762.
                         [67] S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R. Gascoyne, Dielectrophoresis has
                             broad applicability to marker-free isolation of tumor cells from blood by microfluidic
                             systems, Biomicrofluidics 7 (1) (2013) 011808.
                         [68] S. Shim, K. Stemke-Hale, J. Noshari, F.F. Becker, P.R. Gascoyne, Dielectrophoresis has
                             broad applicability to marker-free isolation of tumor cells from blood by microfluidic
                             systems, Biomicrofluidics 7 (1) (2013) 011807.
                         [69] A.F. Sarioglu, N. Aceto, N. Kojic, M.C. Donaldson, M. Zeinali, B. Hamza, et al. A mi-
                             crofluidic device for label-free, physical capture of circulating tumor cell clusters, Nat.
                             Methods 12 (7) (2015) 685.
                         [70] H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, Devel-
                             opment of a rare cell fractionation device: application for cancer detection, IEEE Trans.
                             Nanobiosci. 3 (4) (2004) 251–256.
                         [71] S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R.J. Cote, et al. Membrane microfilter de-
                             vice for selective capture, electrolysis and genomic analysis of human circulating tumor
                             cells, J. Chromatogr. A 1162 (2) (2007) 154–161.
   244   245   246   247   248   249   250   251   252   253   254