Page 247 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 247
246 CHAPTER 9 Application of microfluidics in cancer treatment
[12] G. Destgeer, H.J. Sung, Recent advances in microfluidic actuation and micro-object ma-
nipulation via surface acoustic waves, Lab Chip 15 (13) (2015) 2722–2738.
[13] B. Jakoby, M.J. Vellekoop, Properties of love waves: applications in sensors, Smart Ma-
ter. Struct. 6 (6) (1997) 668.
[14] O. Tigli, M.E. Zaghloul, Temperature stability analysis of CMOS-saw devices by embed-
ded heater design, IEEE Trans. Dev. Mater. Reliab. 8 (4) (2008) 705–713.
[15] S. Anand, J. Nylk, S.L. Neale, C. Dodds, S. Grant, M.H. Ismail, et al. Aerosol droplet op-
tical trap loading using surface acoustic wave nebulization, Opt. Express 21 (25) (2013)
30148–30155.
[16] A. Winkler, R. Brünig, C. Faust, R. Weser, H. Schmidt, Towards efficient surface acoustic
wave (SAW)-based microfluidic actuators, Sens. Actuators A Phys. 247 (2016) 259–268.
[17] P.S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery, Nat. Rev. Drug
Discov. 5 (3) (2006) 210.
[18] R. Ma, L. Xie, C. Han, K. Su, T. Qiu, L. Wang, et al. In vitro fertilization on a single-
oocyte positioning system integrated with motile sperm selection and early embryo de-
velopment, Anal. Chem. 83 (8) (2011) 2964–2970.
[19] J. Lacombe, S.L. Phillips, F. Zenhausern, Microfluidics as a new tool in radiation biology,
Cancer Lett. 371 (2) (2016) 292–300.
[20] K.W. Pulsipher, D.A. Hammer, D. Lee, C.M. Sehgal, Engineering theranostic micro-
bubbles using microfluidics for ultrasound imaging and therapy: a review, Ultrasound
Med. Biol. 44 (12) (2018) 2441–2460.
[21] A. Boussommier-Calleja, R. Li, M.B. Chen, S.C. Wong, R.D. Kamm, Microfluidics: a
new tool for modeling cancer–immune interactions, Trends Cancer 2 (1) (2016) 6–19.
[22] A. Barg, R. Ossig, T. Goerge, M.F. Schneider, H. Schillers, H. Oberleithner, et al. Soluble
plasma-derived von Willebrand factor assembles to a haemostatically active filamentous
network, Thromb. Haemost. 97 (04) (2007) 514–526.
[23] B. Kasemo, Biological surface science, Surf. Sci. 500 (1–3) (2002) 656–677.
[24] N. Li, A. Tourovskaia, A. Folch, Biology on a chip: microfabrication for studying the
behavior of cultured cells, Crit. Rev. Biomed. Eng. 31 (5&6) (2003) 423–488.
[25] S.K. Sia, G.M. Whitesides, Microfluidic devices fabricated in poly (dimethylsiloxane) for
biological studies, Electrophoresis 24 (21) (2003) 3563–3576.
[26] D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in
biology, Ann. Rev. Biomed. Eng. 4 (1) (2002) 261–286.
[27] D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems. 1. Intro-
duction, theory, and technology, Anal. Chem. 74 (12) (2002) 2623–2636.
[28] N.T. Nguyen, Z. Wu, Micromixers—a review, J. Micromech. Microeng. 15 (2) (2005)
R1.
[29] T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale, Rev. Mod.
Phys. 77 (3) (2004) 977.
[30] S.J.J. Lee, N. Sundararajan, Microfabrication for Microfluidics, Artech House, (2010).
[31] S. Götz, U. Karst, Recent developments in optical detection methods for microchip sepa-
rations, Anal. Bioanal. Chem. 387 (1) (2007) 183–192.
[32] G. Khanarian, Optical properties of cyclic olefin copolymers, Opt. Eng. 40 (6) (2001)
1024–1030.
[33] P. Laval, N. Lisai, J.B. Salmon, M. Joanicot, A microfluidic device based on droplet stor-
age for screening solubility diagrams, Lab Chip 7 (7) (2007) 829–834.
[34] J.M. Bartlett, D. Stirling, A short history of the polymerase chain reaction, PCR Proto-
cols, Humana Press, Totowa, New Jersey, 2003, pp. 3–6.