Page 64 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 64

40  2 New Trends in the In Situ Enzymatic Recycling of NAD(P)(H) Cofactors

                       cofactor regeneration. Biochemistry, 51,  (2003) Practical applications of hydro-
                       4263–4270.                       genase I from Pyrococcus furiosus for
                     31. Torres Pazmi˜ no, D.E., Snajdrova, R.,  NADPH generation and regeneration. J.
                       Baas, B.-J., Ghobrial, M., Mihovilovic,  Mol. Catal. B: Enzym., 24–25, 39–52.
                       M.D., and Fraaije, M.W. (2008) Self-  39. Wong, C.-H. and Whitesides, G.M.
                       sufficient Baeyer–Villiger monooxyge-  (1981) Enzyme-catalyzed organic syn-
                       nases: effective coenzyme regeneration  thesis: NAD(P)H cofactor regeneration
                       for biooxygenation by fusion engi-  by using glucose 6-phosphate and the
                       neering. Angew. Chem. Int. Ed., 47,  glucose-6-phosphate dehydrogenase
                       2275–2278.                       from Leuconostoc mesenteroides. J. Am.
                     32. Torres Pazmi˜ no, D.E., Riebel, A., de  Chem. Soc., 103, 4890–4899.
                       Lange, J., Rudroff, F., Mihovilovic,  40. Hartog, A.F., van Herk, T., and Wever,
                       M.D., and Fraaije, M.W. (2009) Efficient  R. (2011) Efficient regeneration of
                       biooxidations catalyzed by a new gener-  NADPH in a 3-enzyme cascade
                       ation of self-sufficient Baeyer–Villiger  reaction by in situ generation of glu-
                                                        cose 6-phosphate from glucose and
                       monooxygenases. ChemBioChem, 10,
                                                        pyrophosphate. Adv.Synth.Catal., 353,
                       2595–2598.
                                                        2339–2344.
                     33. Lauterbach, L., Lenz, O., and Vincent,
                                                     41. Stampfer, W., Kosjek, B., Faber, K., and
                       K.A. (2013) H -driven cofactor regen-
                                 2
                                      +
                       eration with NAD(P) -reducing    Kroutil, W. (2003) Biocatalytic asym-
                       hydrogenases. FEBS J., 280, 3058–3068.  metric hydrogen transfer employing
                     34. Evans, R.M., Parkin, A., Roessler,  Rhodococcus ruber DSM 44541. J. Org.
                                                        Chem., 68, 402–406.
                       M.M., Murphy, B.J., Adamson, H.,
                                                     42. Goldberg, K., Edegger, K., Kroutil, W.,
                       Lukey, M.J., Sargent, F., Volbeda, A.,
                                                        and Liese, A. (2006) Overcoming the
                       Fontecilla-Camps, J.C., and Armstrong,
                                                        thermodynamic limitation in asymmet-
                       F.A. (2013) Principles of sustained  ric hydrogen transfer reactions catalyzed
                       enzymatic hydrogen oxidation in  by whole cells. Biotechnol. Bioeng., 95,
                       the presence of oxygen − the cru-  192–198.
                       cial influence of high potential Fe-S
                                                     43. Calvin, S.J., Mangan, D., Miskelly, I.,
                       clusters in the electron relay of [NiFe]-
                                                        Moody, T.S., and Stevenson, P.J. (2012)
                       hydrogenases. J. Am. Chem. Soc., 135,
                                                        Overcoming equilibrium issues with
                       2694–2707.
                                                        carbonyl reductase enzymes. Org. Process
                     35. Payen, B., Segui, M., Monsan, P.,
                                                        Res. Dev., 16, 82–86.
                       Schneider, K., Friedrich, C.G., and
                                                     44. Goldberg, K., Schroer, K., L¨ utz, S., and
                       Schlegel, H.G. (1983) Use of cytoplasmic
                                                        Liese, A. (2007) Biocatalytic ketone
                       hydrogenase from Alcaligenes eutrophus
                                                        reduction – a powerful tool for the
                       for NADH regeneration. Biotechnol. Lett.,
                                                        production of chiral alcohols – part I:
                       5, 463–468.
                                                        processes with isolated enzymes. Appl.
                     36. Lauterbach, L., Idris, Z., Vincent, K.A.,  Microbiol. Biotechnol., 76, 237–248.
                       and Lenz, O. (2011) Catalytic properties  45. Kara, S., Spickermann, D., Schrittwieser,
                       of the isolated diaphorase fragment of  J.H., Leggewie, C., van Berkel, W.J.H.,
                             +
                       the NAD -reducing [NiFe]-hydrogenase  Arends, I.W.C.E., and Hollmann, F.
                       from Ralstonia eutropha. PLoS One, 6,  (2013) More efficient redox biocatalysis
                       e25939.                          by utilising 1,4-butanediol as a ‘smart
                     37. Reeve, H.A., Lauterbach, L., Ash, P.A.,  cosubstrate’. Green Chem., 15, 330–335.
                       Lenz, O., and Vincent, K.A. (2012) A  46. Hensel, R., Mayr, U., Fujiki, H., and
                       modular system for regeneration of  Kandler, O. (1977) Comparative studies
                       NAD cofactors using graphite parti-  of lactate dehydrogenases in lactic acid
                       cles modified with hydrogenase and  bacteria. Eur. J. Biochem., 80, 83–92.
                       diaphorase moieties. Chem. Commun.,  47. Richter, N., Zienert, A., and Hummel,
                       48, 1589–1591.                   W. (2011) A single-point mutation
                     38. Mertens, R., Greiner, L., van den Ban,  enables lactate dehydrogenase from
                                                                            +
                       E.C.D., Haaker, H.B.C.M., and Liese, A.  Bacillus subtilis to utilize NAD and
   59   60   61   62   63   64   65   66   67   68   69