Page 172 - Biodegradable Polyesters
P. 172
150 6 Shape Memory Systems with Biodegradable Polyesters
4. Mather, P.T., Luo, X., and Rousseau, I.A. Gianoncelli, A., Brisotto, M., Bontempi,
(2009) Shape memory polymer research. E., and Riccò, T. (2013) One-way and
Annu. Rev. Mater. Sci., 39, 445–471. two-way shape memory behaviour of
5. Xie, T. (2011) Recent advances in poly- semi-crystalline networks based on sol-
mer shape memory. Polymer, 52 (22), gel cross-linked poly(ε-caprolactone).
4985–5000. Polymer, 54 (16), 4253–4265.
6. Huang, W.M., Zhao, Y., Wang, C.C., 15. Pandini, S., Passera, S., Messori, M.,
Ding, Z., Purnawali, H., Tang, C., and Paderni, K., Toselli, M., Gianoncelli, A.,
Zhang, J.L. (2012) Thermo/chemo- Bontempi, E., and Riccò, T. (2012) Two-
responsive shape memory effect in way reversible shape memory behaviour
polymers: a sketch of working mecha- of crosslinked poly(ε-caprolactone).
nisms, fundamentals and optimization. J. Polymer, 53 (9), 1915–1924.
Polym. Res., 19 (9), 1–34. 16. Alvarado-Tenorio, B., Romo-Uribe, A.,
7. Sauter, T., Heuchel, M., Kratz, K., and and Mather, P.T. (2011) Microstruc-
Lendlein, A. (2013) Quantifying the ture and phase behavior of POSS/PCL
shape-memory effect of polymers by shape memory nanocomposites. Macro-
cyclic thermomechanical tests. Polym. molecules, 44 (14), 5682–5692.
Rev., 53 (1), 6–40. 17. Yu, X., Zhou, S., Zheng, X., Xiao, Y.,
8. Wong, Y.S. and Venkatraman, S.S. (2010) and Guo, T. (2009) Influence of in vitro
Recovery as a measure of oriented crys-
degradation of a biodegradable nanocom-
talline structure in poly(L-lactide) used
posite on its shape memory effect. J.
as shape memory polymer. Acta Mater., Phys. Chem. C, 113 (41), 17630–17635.
58 (1), 49–58. 18. Xiao, Y., Zhou, S., Wang, L., and
9. Ghobadi, E., Heuchel, M., Kratz, K., and
Gong, T. (2010) Electro-active
Lendlein, A. (2013) Influence of the addi-
shape memory properties of poly(ε-
tion of water to amorphous switching
caprolactone)/functionalized multiwalled
domains on the simulated shape-memory
carbon nanotube nanocomposite.
properties of poly(L-lactide). Polymer, 54
ACS Appl. Mater. Interfaces, 2 (12),
(16), 4204–4211.
3506–3514.
10. Radjabian, M., Kish, M.H.,
and Mohammadi, N. (2012) 19. Zhu, G.,Liang,G., Xu,Q., andYu, Q.
Structure–property relationship for (2003) Shape-memory effects of radiation
poly(lactic acid) (PLA) filaments: phys- crosslinked poly(ε-caprolactone). J. Appl.
Polym. Sci., 90 (1), 1589–1595.
ical, thermomechanical and shape
20. Zhu, G.M., Xu, Q.Y., Liang, G.Z., and
memory characterization. J. Polym.
Zhou, H.F. (2005) Shape-memory behav-
Res., 19 (6), 1–10.
11. Karger-Kocsis, J., Shang, P.P., and iors of sensitizing radiation-crosslinked
Moskala, E.J. (1999) Effects of defor- polycaprolactone with polyfunctional
mation rate on the necking of an poly(ester acrylate). J. Appl. Polym. Sci.,
amorphous copolyester studied by mod- 95 (3), 634–639.
21. Lendlein, A., Schmidt, A.M., Schroeter,
ulated DSC. J. Therm. Anal. Calorim., 55
(1), 21–28. M., and Langer, R. (2005) Shape-
12. Kanazawa, S. (2008) Development of memory polymer networks from
elastic polylactic acid material using elec- oligo(ε-caprolactone) dimethacrylates.
tron beam radiation. SEI Tech. Rev., 66, J. Polym. Sci.,PartA:Polym.Chem., 43
50–54. (7), 1369–1381.
13. Tuba, F., Khumalo, V.M., and 22. Inoue, K., Yamashiro, M., and Iji, M.
Karger-Kocsis, J. (2013) Essential work of (2009) Recyclable shape-memory poly-
fracture of poly(ε-caprolactone)/boehmite mer: poly(lactic acid) crosslinked by a
alumina nanocomposites: effect of sur- thermoreversible Diels–Alder reaction. J.
face coating. J. Appl. Polym. Sci., 129 (5), Appl. Polym. Sci., 112 (2), 876–885.
2950–2958. 23. Defize, T., Riva, R., Raquez, J.M.,
14. Pandini, S., Baldi, F., Paderni, K., Dubois, P., Jérôme, C., and Alexandre,
Messori, M.,Toselli,M., Pilati,F., M. (2011) Thermoreversibly crosslinked