Page 172 - Biodegradable Polyesters
P. 172

150  6 Shape Memory Systems with Biodegradable Polyesters

                     4. Mather, P.T., Luo, X., and Rousseau, I.A.  Gianoncelli, A., Brisotto, M., Bontempi,
                       (2009) Shape memory polymer research.  E., and Riccò, T. (2013) One-way and
                       Annu. Rev. Mater. Sci., 39, 445–471.  two-way shape memory behaviour of
                     5. Xie, T. (2011) Recent advances in poly-  semi-crystalline networks based on sol-
                       mer shape memory. Polymer, 52 (22),  gel cross-linked poly(ε-caprolactone).
                       4985–5000.                      Polymer, 54 (16), 4253–4265.
                     6. Huang, W.M., Zhao, Y., Wang, C.C.,  15. Pandini, S., Passera, S., Messori, M.,
                       Ding, Z., Purnawali, H., Tang, C., and  Paderni, K., Toselli, M., Gianoncelli, A.,
                       Zhang, J.L. (2012) Thermo/chemo-  Bontempi, E., and Riccò, T. (2012) Two-
                       responsive shape memory effect in  way reversible shape memory behaviour
                       polymers: a sketch of working mecha-  of crosslinked poly(ε-caprolactone).
                       nisms, fundamentals and optimization. J.  Polymer, 53 (9), 1915–1924.
                       Polym. Res., 19 (9), 1–34.    16. Alvarado-Tenorio, B., Romo-Uribe, A.,
                     7. Sauter, T., Heuchel, M., Kratz, K., and  and Mather, P.T. (2011) Microstruc-
                       Lendlein, A. (2013) Quantifying the  ture and phase behavior of POSS/PCL
                       shape-memory effect of polymers by  shape memory nanocomposites. Macro-
                       cyclic thermomechanical tests. Polym.  molecules, 44 (14), 5682–5692.
                       Rev., 53 (1), 6–40.           17. Yu, X., Zhou, S., Zheng, X., Xiao, Y.,
                     8. Wong, Y.S. and Venkatraman, S.S. (2010)  and Guo, T. (2009) Influence of in vitro
                       Recovery as a measure of oriented crys-
                                                       degradation of a biodegradable nanocom-
                       talline structure in poly(L-lactide) used
                                                       posite on its shape memory effect. J.
                       as shape memory polymer. Acta Mater.,  Phys. Chem. C, 113 (41), 17630–17635.
                       58 (1), 49–58.                18. Xiao, Y., Zhou, S., Wang, L., and
                     9. Ghobadi, E., Heuchel, M., Kratz, K., and
                                                       Gong, T. (2010) Electro-active
                       Lendlein, A. (2013) Influence of the addi-
                                                       shape memory properties of poly(ε-
                       tion of water to amorphous switching
                                                       caprolactone)/functionalized multiwalled
                       domains on the simulated shape-memory
                                                       carbon nanotube nanocomposite.
                       properties of poly(L-lactide). Polymer, 54
                                                       ACS Appl. Mater. Interfaces, 2 (12),
                       (16), 4204–4211.
                                                       3506–3514.
                    10. Radjabian, M., Kish, M.H.,
                       and Mohammadi, N. (2012)      19. Zhu, G.,Liang,G., Xu,Q., andYu, Q.
                       Structure–property relationship for  (2003) Shape-memory effects of radiation
                       poly(lactic acid) (PLA) filaments: phys-  crosslinked poly(ε-caprolactone). J. Appl.
                                                       Polym. Sci., 90 (1), 1589–1595.
                       ical, thermomechanical and shape
                                                     20. Zhu, G.M., Xu, Q.Y., Liang, G.Z., and
                       memory characterization. J. Polym.
                                                       Zhou, H.F. (2005) Shape-memory behav-
                       Res., 19 (6), 1–10.
                    11. Karger-Kocsis, J., Shang, P.P., and  iors of sensitizing radiation-crosslinked
                       Moskala, E.J. (1999) Effects of defor-  polycaprolactone with polyfunctional
                       mation rate on the necking of an  poly(ester acrylate). J. Appl. Polym. Sci.,
                       amorphous copolyester studied by mod-  95 (3), 634–639.
                                                     21. Lendlein, A., Schmidt, A.M., Schroeter,
                       ulated DSC. J. Therm. Anal. Calorim., 55
                       (1), 21–28.                     M., and Langer, R. (2005) Shape-
                    12. Kanazawa, S. (2008) Development of  memory polymer networks from
                       elastic polylactic acid material using elec-  oligo(ε-caprolactone) dimethacrylates.
                       tron beam radiation. SEI Tech. Rev., 66,  J. Polym. Sci.,PartA:Polym.Chem., 43
                       50–54.                          (7), 1369–1381.
                    13. Tuba, F., Khumalo, V.M., and  22. Inoue, K., Yamashiro, M., and Iji, M.
                       Karger-Kocsis, J. (2013) Essential work of  (2009) Recyclable shape-memory poly-
                       fracture of poly(ε-caprolactone)/boehmite  mer: poly(lactic acid) crosslinked by a
                       alumina nanocomposites: effect of sur-  thermoreversible Diels–Alder reaction. J.
                       face coating. J. Appl. Polym. Sci., 129 (5),  Appl. Polym. Sci., 112 (2), 876–885.
                       2950–2958.                    23. Defize, T., Riva, R., Raquez, J.M.,
                    14. Pandini, S., Baldi, F., Paderni, K.,  Dubois, P., Jérôme, C., and Alexandre,
                       Messori, M.,Toselli,M., Pilati,F.,  M. (2011) Thermoreversibly crosslinked
   167   168   169   170   171   172   173   174   175   176   177