Page 175 - Biodegradable Polyesters
P. 175
References 153
polyurethane (TPU) bio-based blends. J. polymerized epoxy/poly(ε-caprolactone)
Polym. Res., 20 (5), 140, 1-8. polymers showing a shape memory
62. Zhang, W., Chen, L., and Zhang, Y. effect. Polymer, 53 (26), 6089–6095.
(2009) Surprising shape-memory effect 72. Lützen, H., Gesing, T.M., and Hartwig,
of polylactide resulted from toughening A. (2013) Nucleation as a new concept
by polyamide elastomer. Polymer, 50 (5),
for morphology adjustment of crystalline
1311–1315.
thermosetting epoxy polymers. React.
63. Raja, M., Ryu, S.H., and Shanmugharaj,
Funct. Polym., 73 (8), 1038–1045.
A.M. (2013) Thermal, mechanical and 73. Ratna, D. and Karger-Kocsis, J. (2011)
electroactive shape memory proper-
Shape memory polymer system of semi-
ties of polyurethane (PU)/poly(lactic
acid)(PLA)/CNT nanocomposites. Eur. interpenetrating network structure
Polym. J., 49 (11), 3492–3500. composed of crosslinked poly (methyl
64. Amirian, M., Cai, W., Chakoli, A.N., Sui, methacrylate) and poly (ethylene oxide).
J., and Feng, J. (2010) Shape memory Polymer, 52 (4), 1063–1070.
properties of poly(L-lactide)/poly(ε- 74. Grishchuk, S., Bonyár, A., Elsäßer, J.,
caprolactone) blends and their compos- Wolynski, A., Karger-Kocsis, J., and
ites with carbon nanotubes. J. Mater. Sci. Wetzel, B. (2013) Toward reliable mor-
Eng., 4 (3), 27–34. phology assessment of thermosets via
65. Luo, H.,Liu,Y., Yu,Z., Zhang, S.,and Li, physical etching: vinyl ester resin as an
B. (2008) Novel biodegradable shape example. eXPRESS Polym. Lett., 7 (5),
memory material based on partial 407–415.
inclusion complex formation between 75. Rodriguez, E.D., Luo, X., and Mather,
α-cyclodextrin and poly (ε-caprolactone).
P.T. (2011) Linear/network poly(ε-
Biomacromolecules, 9 (10), 2573–2577.
caprolactone) blends exhibiting shape
66. Zhang, H., Wang, H., Zhong, W., and
memory assisted self-healing (SMASH).
Du, Q. (2009) A novel type of shape
ACS Appl. Mater. Interfaces, 3 (2),
memory polymer blend and the shape
152–161.
memory mechanism. Polymer, 50 (6),
76. Yuan, Y.C., Yin, T., Rong, M.Z., and
1596–1601.
67. Du, J., Armstrong, S.R., and Baer, E. Zhang, M.Q. (2008) Self healing in
(2013) Co-extruded multilayer shape polymers and polymer composites. Con-
memory materials: comparing layered cepts, realization and outlook: a review.
and blend architectures. Polymer, 54 eXPRESS Polym. Lett., 2 (4), 238–250.
(20), 5399–5407. 77. Luo, X. and Mather, P.T. (2010) Triple-
68. Shen, T., Lu, M., Zhou, D., and Liang, shape polymeric composites (TSPCs).
L. (2012) Influence of blocked polyiso- Adv. Funct. Mater., 20 (16), 2649–2656.
cyanate on thermomechanical, shape 78. Fej˝ os, M., Molnár, K., and Karger-Kocsis,
memory and biodegradable properties J. (2013) Epoxy/polycaprolactone sys-
of poly(lactic acid)/poly(ethylene glycol) tems with triple-shape memory effect:
blends. Iran.Polym.J., 21 (5), 317–323. electrospun nanoweb with and without
69. Li, J., Liu, T., Pan, Y., Xia, S., Zheng, Z., graphene versus co-continuous morphol-
Ding, X., and Peng, Y. (2012) A versatile ogy. Materials, 6 (10), 4489–4504.
polymer co-network with broadened 79. Zhang, S.,Feng, Y.,Zhang, L.,Sun,J.,
glass transition showing adjustable
Xu, X., and Xu, Y. (2007) Novel interpen-
multiple-shape memory effect. Macromol.
etrating networks with shape-memory
Chem. Phys., 213 (21), 2246–2252.
properties. J. Polym. Sci., Part A: Polym.
70. Erden, N. and Jana, S.C. (2013) Synthesis
Chem., 45 (5), 768–775.
and characterization of shape-memory
polyurethane-polybenzoxazine com- 80. Pillai, C.K.S. and Sharma, C.P. (2010)
pounds. Macromol. Chem. Phys., 214 Absorbable polymeric surgical sutures:
(11), 1225–1237. chemistry, production, properties,
71. Lützen, H., Gesing, T.M., Kim, B.K., and biodegradability, and performance. J.
Hartwig, A. (2012) Novel cationically Biomater. Appl., 25 (4), 291–366.