Page 175 - Biodegradable Polyesters
P. 175

References  153

                 polyurethane (TPU) bio-based blends. J.  polymerized epoxy/poly(ε-caprolactone)
                 Polym. Res., 20 (5), 140, 1-8.   polymers showing a shape memory
               62. Zhang, W., Chen, L., and Zhang, Y.  effect. Polymer, 53 (26), 6089–6095.
                 (2009) Surprising shape-memory effect  72. Lützen, H., Gesing, T.M., and Hartwig,
                 of polylactide resulted from toughening  A. (2013) Nucleation as a new concept
                 by polyamide elastomer. Polymer, 50 (5),
                                                  for morphology adjustment of crystalline
                 1311–1315.
                                                  thermosetting epoxy polymers. React.
               63. Raja, M., Ryu, S.H., and Shanmugharaj,
                                                  Funct. Polym., 73 (8), 1038–1045.
                 A.M. (2013) Thermal, mechanical and  73. Ratna, D. and Karger-Kocsis, J. (2011)
                 electroactive shape memory proper-
                                                  Shape memory polymer system of semi-
                 ties of polyurethane (PU)/poly(lactic
                 acid)(PLA)/CNT nanocomposites. Eur.  interpenetrating network structure
                 Polym. J., 49 (11), 3492–3500.   composed of crosslinked poly (methyl
               64. Amirian, M., Cai, W., Chakoli, A.N., Sui,  methacrylate) and poly (ethylene oxide).
                 J., and Feng, J. (2010) Shape memory  Polymer, 52 (4), 1063–1070.
                 properties of poly(L-lactide)/poly(ε-  74. Grishchuk, S., Bonyár, A., Elsäßer, J.,
                 caprolactone) blends and their compos-  Wolynski, A., Karger-Kocsis, J., and
                 ites with carbon nanotubes. J. Mater. Sci.  Wetzel, B. (2013) Toward reliable mor-
                 Eng., 4 (3), 27–34.              phology assessment of thermosets via
               65. Luo, H.,Liu,Y., Yu,Z., Zhang, S.,and Li,  physical etching: vinyl ester resin as an
                 B. (2008) Novel biodegradable shape  example. eXPRESS Polym. Lett., 7 (5),
                 memory material based on partial  407–415.
                 inclusion complex formation between  75. Rodriguez, E.D., Luo, X., and Mather,
                 α-cyclodextrin and poly (ε-caprolactone).
                                                  P.T. (2011) Linear/network poly(ε-
                 Biomacromolecules, 9 (10), 2573–2577.
                                                  caprolactone) blends exhibiting shape
               66. Zhang, H., Wang, H., Zhong, W., and
                                                  memory assisted self-healing (SMASH).
                 Du, Q. (2009) A novel type of shape
                                                  ACS Appl. Mater. Interfaces, 3 (2),
                 memory polymer blend and the shape
                                                  152–161.
                 memory mechanism. Polymer, 50 (6),
                                               76. Yuan, Y.C., Yin, T., Rong, M.Z., and
                 1596–1601.
               67. Du, J., Armstrong, S.R., and Baer, E.  Zhang, M.Q. (2008) Self healing in
                 (2013) Co-extruded multilayer shape  polymers and polymer composites. Con-
                 memory materials: comparing layered  cepts, realization and outlook: a review.
                 and blend architectures. Polymer, 54  eXPRESS Polym. Lett., 2 (4), 238–250.
                 (20), 5399–5407.              77. Luo, X. and Mather, P.T. (2010) Triple-
               68. Shen, T., Lu, M., Zhou, D., and Liang,  shape polymeric composites (TSPCs).
                 L. (2012) Influence of blocked polyiso-  Adv. Funct. Mater., 20 (16), 2649–2656.
                 cyanate on thermomechanical, shape  78. Fej˝ os, M., Molnár, K., and Karger-Kocsis,
                 memory and biodegradable properties  J. (2013) Epoxy/polycaprolactone sys-
                 of poly(lactic acid)/poly(ethylene glycol)  tems with triple-shape memory effect:
                 blends. Iran.Polym.J., 21 (5), 317–323.  electrospun nanoweb with and without
               69. Li, J., Liu, T., Pan, Y., Xia, S., Zheng, Z.,  graphene versus co-continuous morphol-
                 Ding, X., and Peng, Y. (2012) A versatile  ogy. Materials, 6 (10), 4489–4504.
                 polymer co-network with broadened  79. Zhang, S.,Feng, Y.,Zhang, L.,Sun,J.,
                 glass transition showing adjustable
                                                  Xu, X., and Xu, Y. (2007) Novel interpen-
                 multiple-shape memory effect. Macromol.
                                                  etrating networks with shape-memory
                 Chem. Phys., 213 (21), 2246–2252.
                                                  properties. J. Polym. Sci., Part A: Polym.
               70. Erden, N. and Jana, S.C. (2013) Synthesis
                                                  Chem., 45 (5), 768–775.
                 and characterization of shape-memory
                 polyurethane-polybenzoxazine com-  80. Pillai, C.K.S. and Sharma, C.P. (2010)
                 pounds. Macromol. Chem. Phys., 214  Absorbable polymeric surgical sutures:
                 (11), 1225–1237.                 chemistry, production, properties,
               71. Lützen, H., Gesing, T.M., Kim, B.K., and  biodegradability, and performance. J.
                 Hartwig, A. (2012) Novel cationically  Biomater. Appl., 25 (4), 291–366.
   170   171   172   173   174   175   176   177   178   179   180