Page 174 - Biodegradable Polyesters
P. 174

152  6 Shape Memory Systems with Biodegradable Polyesters

                       diol, poly (ethylene glycol), and  ε-caprolactone chemistry to create
                       5-cinnamoyloxyisophthalic acid. J. Appl.  advanced polymer architectures. Polymer,
                       Polym. Sci., 120 (6), 3556–3564.  54 (17), 4333–4350.
                    42. Nagata, M. and Yamamoto, Y. (2009)  52. Ping, P., Wang, W., Chen, X., and Jing,
                       Synthesis and characterization of pho-  X. (2007) The influence of hard-segments
                       tocrosslinked poly(ε-caprolactone)s  on two-phase structure and shape mem-
                       showing shape-memory properties. J.  ory properties of PCL-based segmented
                       Polym. Sci.,PartA:Polym.Chem., 47 (9),  polyurethanes. J. Polym. Sci., Part B:
                       2422–2433.                      Polym. Phys., 45 (5), 557–570.
                    43. Nagata, M. and Yamamoto, Y. (2010)  53. Yan, B., Gu, S., and Zhang, Y. (2013)
                       Photocurable shape-memory copolymers  Polylactide-based thermoplastic shape
                       of ε-caprolactone and L-lactide. Macro-  memory polymer nanocomposites. Eur.
                       mol. Chem. Phys., 211 (16), 1826–1835.  Polym. J., 49 (2), 366–378.
                    44. Nagata, M. and Sato, Y. (2005) Syn-  54. Peponi, L., Navarro-Baena, I., Sonseca,
                       thesis and properties of photocurable  A., Gimenez, E., Marcos-Fernandez,
                       biodegradable multiblock copolymers  A., and Kenny, J.M. (2013) Synthe-
                       based on poly(ε-caprolactone) and  sis and characterization of PCL-PLLA
                       poly(L-lactide) segments. J. Polym.  polyurethane with shape memory behav-
                       Sci.,PartA:Polym.Chem., 43 (11),  ior. Eur.Polym.J., 49 (4), 893–903.
                       2426–2439.
                                                     55. Xu, J. and Song, J. (2010) High per-
                    45. Zhang, D., Giese, M.L., Prukop, S.L.,
                                                       formance shape memory polymer
                       and Grunlan, M.A. (2011) Poly(ε-  networks based on rigid nanoparticle
                       caprolactone)-based shape memory
                                                       cores. Proc. Natl. Acad. Sci. U.S.A., 107
                       polymers with variable polydimethylsilox-
                                                       (17), 7652–7657.
                       ane soft segment lengths. J. Polym. Sci.,
                                                     56. Cao, F. and Jana, S.C. (2007) Nanoclay-
                       Part A: Polym. Chem., 49 (3), 754–761.
                                                       tethered shape memory polyurethane
                    46. Guo, B., Chen, Y., Lei, Y., Zhang, L.,
                                                       nanocomposites. Polymer, 48 (13),
                       Zhou, W.Y., Rabie, A.B.M., and Zhao, J.
                                                       3790–3800.
                       (2011) Biobased poly(propylene sebacate)
                                                     57. Gunes, I.S., Cao, F., and Jana, S.C. (2008)
                       as shape memory polymer with tun-
                       able switching temperature for potential  Effect of thermal expansion on shape
                       biomedical applications. Biomacro-  memory behavior of polyurethane and
                       molecules, 12 (4), 1312–1321.   its nanocomposites. J. Polym. Sci., Part B:
                                                       Polym. Phys., 46 (14), 1437–1449.
                    47. Ninh, C. and Bettinger, C.J. (2013)
                                                     58. Zhu, Y., Hu, J.L., Yeung, K.W., Liu, Y.Q.,
                       Reconfigurable biodegradable shape-
                                                       and Liem, H.M. (2006) Influence of ionic
                       memory elastomers via Diels-Alder
                       coupling. Biomacromolecules, 14 (7),  groups on the crystallization and melt-
                       2162–2170.                      ing behavior of segmented polyurethane
                    48. Ishida, K., Hortensius, R., Luo, X.,  ionomers. J. Appl. Polym. Sci., 100 (6),
                       and Mather, P.T. (2012) Soft bacte-  4603–4613.
                       rial polyester-based shape memory  59. Madbouly, S.A. and Lendlein, A. (2012)
                       nanocomposites featuring reconfigurable  Degradable polyurethane/soy protein
                       nanostructure. J. Polym. Sci., Part B:  shape-memory polymer blends prepared
                       Polym. Phys., 50 (6), 387–393.  via environmentally-friendly aqueous
                    49. Han, S.-I., Gu, B.H., Nam, K.H., Im, S.J.,  dispersions. Macromol. Mater. Eng., 297
                       Kim, S.C., and Im, S.S. (2007) Novel  (12), 1213–1224.
                       copolyester-based ionomer for a shape-  60. Yang, S., Yuan, H., Luo, J., Chen, S.,
                       memory biodegradable material. Polymer,  Ge, Z., Chen, S., and Zheng, J. (2013)
                       48 (7), 1830–1834.              Facile preparation of shape memory
                    50. Huang, W.M., Yang, B., and Fu, Y.Q.  polyurethanes by polyurethanes blending.
                       (eds) (2012) Polyurethane Shape Memory  J. Appl. Polym. Sci., 130 (6), 4047–4053.
                       Polymers, CRC Press, Boca Raton, FL.  61. Lai, S.-M. and Lan, Y.-C. (2013) Shape
                    51. Sisson, A.L., Ekinci, D., and Lendlein,  memory properties of melt-blended
                       A. (2013) The contemporary role of  polylactic acid (PLA)/thermoplastic
   169   170   171   172   173   174   175   176   177   178   179