Page 174 - Biodegradable Polyesters
P. 174
152 6 Shape Memory Systems with Biodegradable Polyesters
diol, poly (ethylene glycol), and ε-caprolactone chemistry to create
5-cinnamoyloxyisophthalic acid. J. Appl. advanced polymer architectures. Polymer,
Polym. Sci., 120 (6), 3556–3564. 54 (17), 4333–4350.
42. Nagata, M. and Yamamoto, Y. (2009) 52. Ping, P., Wang, W., Chen, X., and Jing,
Synthesis and characterization of pho- X. (2007) The influence of hard-segments
tocrosslinked poly(ε-caprolactone)s on two-phase structure and shape mem-
showing shape-memory properties. J. ory properties of PCL-based segmented
Polym. Sci.,PartA:Polym.Chem., 47 (9), polyurethanes. J. Polym. Sci., Part B:
2422–2433. Polym. Phys., 45 (5), 557–570.
43. Nagata, M. and Yamamoto, Y. (2010) 53. Yan, B., Gu, S., and Zhang, Y. (2013)
Photocurable shape-memory copolymers Polylactide-based thermoplastic shape
of ε-caprolactone and L-lactide. Macro- memory polymer nanocomposites. Eur.
mol. Chem. Phys., 211 (16), 1826–1835. Polym. J., 49 (2), 366–378.
44. Nagata, M. and Sato, Y. (2005) Syn- 54. Peponi, L., Navarro-Baena, I., Sonseca,
thesis and properties of photocurable A., Gimenez, E., Marcos-Fernandez,
biodegradable multiblock copolymers A., and Kenny, J.M. (2013) Synthe-
based on poly(ε-caprolactone) and sis and characterization of PCL-PLLA
poly(L-lactide) segments. J. Polym. polyurethane with shape memory behav-
Sci.,PartA:Polym.Chem., 43 (11), ior. Eur.Polym.J., 49 (4), 893–903.
2426–2439.
55. Xu, J. and Song, J. (2010) High per-
45. Zhang, D., Giese, M.L., Prukop, S.L.,
formance shape memory polymer
and Grunlan, M.A. (2011) Poly(ε- networks based on rigid nanoparticle
caprolactone)-based shape memory
cores. Proc. Natl. Acad. Sci. U.S.A., 107
polymers with variable polydimethylsilox-
(17), 7652–7657.
ane soft segment lengths. J. Polym. Sci.,
56. Cao, F. and Jana, S.C. (2007) Nanoclay-
Part A: Polym. Chem., 49 (3), 754–761.
tethered shape memory polyurethane
46. Guo, B., Chen, Y., Lei, Y., Zhang, L.,
nanocomposites. Polymer, 48 (13),
Zhou, W.Y., Rabie, A.B.M., and Zhao, J.
3790–3800.
(2011) Biobased poly(propylene sebacate)
57. Gunes, I.S., Cao, F., and Jana, S.C. (2008)
as shape memory polymer with tun-
able switching temperature for potential Effect of thermal expansion on shape
biomedical applications. Biomacro- memory behavior of polyurethane and
molecules, 12 (4), 1312–1321. its nanocomposites. J. Polym. Sci., Part B:
Polym. Phys., 46 (14), 1437–1449.
47. Ninh, C. and Bettinger, C.J. (2013)
58. Zhu, Y., Hu, J.L., Yeung, K.W., Liu, Y.Q.,
Reconfigurable biodegradable shape-
and Liem, H.M. (2006) Influence of ionic
memory elastomers via Diels-Alder
coupling. Biomacromolecules, 14 (7), groups on the crystallization and melt-
2162–2170. ing behavior of segmented polyurethane
48. Ishida, K., Hortensius, R., Luo, X., ionomers. J. Appl. Polym. Sci., 100 (6),
and Mather, P.T. (2012) Soft bacte- 4603–4613.
rial polyester-based shape memory 59. Madbouly, S.A. and Lendlein, A. (2012)
nanocomposites featuring reconfigurable Degradable polyurethane/soy protein
nanostructure. J. Polym. Sci., Part B: shape-memory polymer blends prepared
Polym. Phys., 50 (6), 387–393. via environmentally-friendly aqueous
49. Han, S.-I., Gu, B.H., Nam, K.H., Im, S.J., dispersions. Macromol. Mater. Eng., 297
Kim, S.C., and Im, S.S. (2007) Novel (12), 1213–1224.
copolyester-based ionomer for a shape- 60. Yang, S., Yuan, H., Luo, J., Chen, S.,
memory biodegradable material. Polymer, Ge, Z., Chen, S., and Zheng, J. (2013)
48 (7), 1830–1834. Facile preparation of shape memory
50. Huang, W.M., Yang, B., and Fu, Y.Q. polyurethanes by polyurethanes blending.
(eds) (2012) Polyurethane Shape Memory J. Appl. Polym. Sci., 130 (6), 4047–4053.
Polymers, CRC Press, Boca Raton, FL. 61. Lai, S.-M. and Lan, Y.-C. (2013) Shape
51. Sisson, A.L., Ekinci, D., and Lendlein, memory properties of melt-blended
A. (2013) The contemporary role of polylactic acid (PLA)/thermoplastic