Page 173 - Biodegradable Polyesters
P. 173
References 151
poly(ε-caprolactone) as recyclable shape- side chain and cyano group through
memory polymer network. Macromol. ring-opening metathesis polymerization.
Rapid Commun., 32 (16), 1264–1269. Polymer, 51 (22), 5100–5106.
24. Defize, T., Riva, R., Jérôme, C., and 33. Lu, X.-L., Lü, X.-Q., Wang, J.-Y., Sun, Z.-
Alexandre, M. (2012) Multifunctional J., and Tong, Y.-X. (2013) Preparation and
poly(ε-caprolactone)-forming networks shapememorypropertiesofTiO /PLCL
2
by Diels–Alder cycloaddition: effect of biodegradable polymer nanocomposites.
the adduct on the shape-memory prop- Trans. Nonferrous Met. Soc. China, 23
erties. Macromol. Chem. Phys., 213 (2), (1), 120–127.
187–197. 34. Fej˝ os, M. and Karger-Kocsis, J. (2013)
25. Guo, W., Kang, H., Chen, Y., Guo, B., Shape memory performance of asym-
and Zhang, L. (2012) Stronger and faster metrically reinforced epoxy/carbon fibre
degradable biobased poly(propylene fabric composites in flexure. eXPRESS
sebacate) as shape memory polymer by Polym. Lett., 7 (6), 528–534.
incorporating boehmite nanoplatelets. 35. Wang, L.-S., Chen, H.-C., Xiong, Z.-C.,
ACS Appl. Mater. Interfaces, 4 (8), Pang, X.-B., and Xiong, C.-D. (2010)
4006–4014. A completely biodegradable poly[(L-
26. Rabani, G., Luftmann, H., and Kraft, A. lactide)-co-(ε-caprolactone)] elastomer
(2006) Synthesis and characterization of reinforced by in situ poly(glycolic acid)
two shape-memory polymers containing fibrillation: manufacturing and shape-
short aramid hard segments and poly(ε- memory effects. Macromol. Mater. Eng.,
caprolactone) soft segments. Polymer, 47 295 (4), 381–385.
(12), 4251–4260. 36. Bhattacharyya, D. and Fakirov, S. (eds)
27. Lu, X.L., Cai, W., and Gao, Z.Y. (2008) (2012) Synthetic Polymer-Polymer Com-
Shape-memory behaviors of biodegrad- posites,Hanser, Munich.
able poly(L-lactide-co-ε-caprolactone) 37. Bertmer, M., Buda, A.,
copolymers. J. Appl. Polym. Sci., 108 (2), Blomenkamp-Höfges, I., Kelch, S.,
1109–1115. and Lendlein, A. (2005) Biodegrad-
28. Kim, Y.B.,Chung,C.W., Kim, H.W.,and able shape-memory polymer networks:
Rhee, Y.-H. (2005) Shape memory effect characterization with solid-state NMR.
of bacterial poly[(3-hydroxybutyrate)-co- Macromolecules, 38 (9), 3793–3799.
(3-hydroxyvalerate)]. Macromol. Rapid 38. Schmidt, A.M. (2006) Electromagnetic
Commun., 26 (13), 1070–1074. activation of shape memory polymer
29. Yang,J., Liu, F.,Yang, L.,and Li,S. networks containing magnetic nanoparti-
(2010) Hydrolytic and enzymatic degra- cles. Macromol. Rapid Commun., 27 (14),
dation of poly(trimethylene carbonate- 1168–1172.
co-D,L-lactide) random copolymers with 39. Garle, A., Kong, S., Ojha, U., and
shape memory behavior. Eur.Polym.J., Budhlall, B.M. (2012) Thermorespon-
46 (4), 783–791. sive semicrystalline poly (ε-caprolactone)
30. Zini, E. and Scandola, M. (2007) Shape networks: exploiting cross-linking with
memory behavior of novel (L-lactide- cinnamoyl moieties to design polymers
glycolide-trimethylene carbonate) with tunable shape memory. ACS Appl.
terpolymers. Biomacromolecules, 8 (11), Mater. Interfaces, 4 (2), 645–657.
3661–3667. 40. Kumar, U.N., Kratz, K., Behl, M., and
31. Gebarowska, K., Kasperczyk, J., Lendlein, A. (2012) Shape-memory prop-
Dobrzy´ nski, P., Scandola, M., Zini, E., erties of magnetically active triple-shape
and Li, S. (2011) NMR analysis of the nanocomposites based on a grafted poly-
chain microstructure of biodegradable mer network with two crystallizable
terpolymers with shape memory proper- switching segments. eXPRESS Polym.
ties. Eur. Polym. J., 47 (6), 1315–1327. Lett., 6 (1), 26–40.
32. Yang,D., Huang, W.,Yu, J.,Jiang,J., 41. Nagata, M. and Inaki, K. (2011)
Zhang, L., and Xie, M. (2010) A novel Biodegradable and photocurable multi-
shape memory polynorbornene func- block copolymers with shape-memory
tionalized with poly(ε-caprolactone) properties from poly (ε-caprolactone)