Page 173 - Biodegradable Polyesters
P. 173

References  151

                 poly(ε-caprolactone) as recyclable shape-  side chain and cyano group through
                 memory polymer network. Macromol.  ring-opening metathesis polymerization.
                 Rapid Commun., 32 (16), 1264–1269.  Polymer, 51 (22), 5100–5106.
               24. Defize, T., Riva, R., Jérôme, C., and  33. Lu, X.-L., Lü, X.-Q., Wang, J.-Y., Sun, Z.-
                 Alexandre, M. (2012) Multifunctional  J., and Tong, Y.-X. (2013) Preparation and
                 poly(ε-caprolactone)-forming networks  shapememorypropertiesofTiO /PLCL
                                                                        2
                 by Diels–Alder cycloaddition: effect of  biodegradable polymer nanocomposites.
                 the adduct on the shape-memory prop-  Trans. Nonferrous Met. Soc. China, 23
                 erties. Macromol. Chem. Phys., 213 (2),  (1), 120–127.
                 187–197.                      34. Fej˝ os, M. and Karger-Kocsis, J. (2013)
               25. Guo, W., Kang, H., Chen, Y., Guo, B.,  Shape memory performance of asym-
                 and Zhang, L. (2012) Stronger and faster  metrically reinforced epoxy/carbon fibre
                 degradable biobased poly(propylene  fabric composites in flexure. eXPRESS
                 sebacate) as shape memory polymer by  Polym. Lett., 7 (6), 528–534.
                 incorporating boehmite nanoplatelets.  35. Wang, L.-S., Chen, H.-C., Xiong, Z.-C.,
                 ACS Appl. Mater. Interfaces, 4 (8),  Pang, X.-B., and Xiong, C.-D. (2010)
                 4006–4014.                       A completely biodegradable poly[(L-
               26. Rabani, G., Luftmann, H., and Kraft, A.  lactide)-co-(ε-caprolactone)] elastomer
                 (2006) Synthesis and characterization of  reinforced by in situ poly(glycolic acid)
                 two shape-memory polymers containing  fibrillation: manufacturing and shape-
                 short aramid hard segments and poly(ε-  memory effects. Macromol. Mater. Eng.,
                 caprolactone) soft segments. Polymer, 47  295 (4), 381–385.
                 (12), 4251–4260.              36. Bhattacharyya, D. and Fakirov, S. (eds)
               27. Lu, X.L., Cai, W., and Gao, Z.Y. (2008)  (2012) Synthetic Polymer-Polymer Com-
                 Shape-memory behaviors of biodegrad-  posites,Hanser, Munich.
                 able poly(L-lactide-co-ε-caprolactone)  37. Bertmer, M., Buda, A.,
                 copolymers. J. Appl. Polym. Sci., 108 (2),  Blomenkamp-Höfges, I., Kelch, S.,
                 1109–1115.                       and Lendlein, A. (2005) Biodegrad-
               28. Kim, Y.B.,Chung,C.W., Kim, H.W.,and  able shape-memory polymer networks:
                 Rhee, Y.-H. (2005) Shape memory effect  characterization with solid-state NMR.
                 of bacterial poly[(3-hydroxybutyrate)-co-  Macromolecules, 38 (9), 3793–3799.
                 (3-hydroxyvalerate)]. Macromol. Rapid  38. Schmidt, A.M. (2006) Electromagnetic
                 Commun., 26 (13), 1070–1074.     activation of shape memory polymer
               29. Yang,J., Liu, F.,Yang, L.,and Li,S.  networks containing magnetic nanoparti-
                 (2010) Hydrolytic and enzymatic degra-  cles. Macromol. Rapid Commun., 27 (14),
                 dation of poly(trimethylene carbonate-  1168–1172.
                 co-D,L-lactide) random copolymers with  39. Garle, A., Kong, S., Ojha, U., and
                 shape memory behavior. Eur.Polym.J.,  Budhlall, B.M. (2012) Thermorespon-
                 46 (4), 783–791.                 sive semicrystalline poly (ε-caprolactone)
               30. Zini, E. and Scandola, M. (2007) Shape  networks: exploiting cross-linking with
                 memory behavior of novel (L-lactide-  cinnamoyl moieties to design polymers
                 glycolide-trimethylene carbonate)  with tunable shape memory. ACS Appl.
                 terpolymers. Biomacromolecules, 8 (11),  Mater. Interfaces, 4 (2), 645–657.
                 3661–3667.                    40. Kumar, U.N., Kratz, K., Behl, M., and
               31. Gebarowska, K., Kasperczyk, J.,  Lendlein, A. (2012) Shape-memory prop-
                 Dobrzy´ nski, P., Scandola, M., Zini, E.,  erties of magnetically active triple-shape
                 and Li, S. (2011) NMR analysis of the  nanocomposites based on a grafted poly-
                 chain microstructure of biodegradable  mer network with two crystallizable
                 terpolymers with shape memory proper-  switching segments. eXPRESS Polym.
                 ties. Eur. Polym. J., 47 (6), 1315–1327.  Lett., 6 (1), 26–40.
               32. Yang,D., Huang, W.,Yu, J.,Jiang,J.,  41. Nagata, M. and Inaki, K. (2011)
                 Zhang, L., and Xie, M. (2010) A novel  Biodegradable and photocurable multi-
                 shape memory polynorbornene func-  block copolymers with shape-memory
                 tionalized with poly(ε-caprolactone)  properties from poly (ε-caprolactone)
   168   169   170   171   172   173   174   175   176   177   178