Page 341 - Biodegradable Polyesters
P. 341

References  319

                 balloon-expansion. Ann. Biomed. Eng.,  (2007) Bacterial synthesis of biodegrad-
                 35, 2031–2038.                   able polyhydroxyalkanoates. J. Appl.
               18. Tverdal, A. (1987) Systolic and diastolic  Microbiol., 102, 1437–1449.
                 blood pressures as predictors of coronary 31. Williams, S.F. and Martin, D.P. (2002)
                 heart disease in middle aged Norwegian  Applications of PHAs in medicine and
                 men. Br.Med.J., 294, 671–673.    pharmacy. Biopolymers, 4, 91–127.
               19. Gross, M.F. and Friedman, M.H. (1998)  32. Grabow, N., Martin, D.P., Schmitz, K.P.,
                 Dynamics of coronary artery curvature  and Sternberg, K. (2010) Absorbable
                 obtained from biplane cineangiograms. J.  polymer stent technologies for vas-
                 Biomech., 31, 479–484.           cular regeneration. J. Chem. Technol.
               20. Venkatraman, S., Boey, F., and Lao, L.L.  Biotechnol., 85, 744–751.
                 (2008) Implanted cardiovascular poly-  33. Harte, I.,Birkinshaw, C.,Jones,E.,
                 mers: natural, synthetic and bio-inspired.  Kennedy, J., and DeBarra, E. (2013) The
                 Prog. Polym. Sci., 33, 853–874.  effect of citrate ester plasticizers on the
               21. Bertrand, O.F., Sipehia, R., Mongrain,  thermal and mechanical properties of
                 R.,Rodés,J., Tardif,J.C., Bilodeau,L.,  poly(DL-lactide). J. Appl. Polym. Sci.,
                 Côté, G., and Bourassa, M.G. (1998)  127, 1997–2003.
                 Biocompatibility aspects of new stent  34. Letchford, K., Sodegraad, A., Plackett, D.,
                 technology. J. Am. Coll. Cardiol., 32,  Gilchrist, S., and Burt, H. (2011) Lactide
                 562–571.
                                                  and glycolide polymers in Biodegradable
               22. Peng, T., Gibula, P., Yao, K.D., and
                                                  Polymers in Clinical Use and Clinical
                 Goosen, M.F.A. (1996) Role of poly-  Development, edited by A. Domb, N.
                 mers in improving the results of stenting  Kumar, A. Azra, John Wiley & Sons, Ltd,
                 in coronary arteries. Biomaterials, 17,
                                                  Chichester.
                 685–694.
                                               35. Vilay, V., Mariatti, M., Ahmad, Z.,
               23. Bonsignore, C. (2011) Open Stent
                                                  Pasomsouk, K., and Todo, M. (2009)
                 Design.
                                                  Characterization of the mechanical
               24. Lanzer, P. (2013) Catheter-Based Car-
                                                  and thermal properties and mor-
                 diovascular Interventions: A Knowledge-
                                                  phological behavior of biodegradable
                 Based Approach, Springer.
               25. Ormiston, J.A. and Serruys, P.W.S. (2009)  poly(l-lactide)/poly(e-caprolactone) and
                 Bioabsorbable coronary stents. Circu-  poly(l-lactide)/ poly(butylene succinate-
                 lation: Cardiovasc. Interventions, 2,  co-l-lactate) polymeric blends. J. Appl.
                                                  Polym. Sci., 114, 1784–1792.
                 255–260.
                                               36. Sun, H.,Mei,L., Song,C., Cui, X.,and
               26. Colombo, A. and Karvouni, E. (2000)
                                                  Wang, P. (2006) The in vivo degradation,
                 Biodegradable stents:“Fulfilling the mis-
                 sion and stepping away”. Circulation,  absorption and excretion of PCL-based
                 102, 371.                        implant. Biomaterials, 27, 1735–1740.
               27. Rich, S. (2012) Plastics Made from  37. Shibata, M., Inoue, Y., and Miyoshi,
                 Corn could Save Your Life, http://www.  M. (2006) Mechanical properties,
                 fastcodesign.com/1662001/plastics-made-  morphology, and crystallization behav-
                 from-corn-could-save-your-life (accessed 1  ior of blends of poly(l-lactide) with
                 October 2014).                   poly(butylene succinate-co-l-lactate) and
               28. ART Technology (2014) http://www.art-  poly(butylene succinate). Polymer, 47,
                 stent.com/technology.php. (accessed 6  3557–3564.
                 October 2014)                 38. Yasuniwa, M. and Satou, T. (2002) Mul-
               29. Elixir Medical Corporation (2013) DES-  tiple melting behavior of poly(butylene
                 olve Novolimus Eluting Bioresorbable  succinate). I. Thermal analysis of melt-
                 Coronary Scaffold System, Elixir Med-  crystallized samples. J. Polym. Sci. Polym.
                 ical Corporation, http://elixirmedical.  Phys., 40, 2411–2420.
                 com/index.php?page=ous-desolve  39. Ramcharitar, S. and Serruys, P.W. (2008)
                 (accessed 1 October 2014).       Fully biodegradable coronary stents:
               30. Verlinden, R.A.J., Hill, D.J., Kenward,  progress to date. Am. J. Cardiovasc.
                 M.A., Williams, C.D., and Radecka, I.  Drugs, 8, 305–314.
   336   337   338   339   340   341   342   343   344   345   346