Page 341 - Biodegradable Polyesters
P. 341
References 319
balloon-expansion. Ann. Biomed. Eng., (2007) Bacterial synthesis of biodegrad-
35, 2031–2038. able polyhydroxyalkanoates. J. Appl.
18. Tverdal, A. (1987) Systolic and diastolic Microbiol., 102, 1437–1449.
blood pressures as predictors of coronary 31. Williams, S.F. and Martin, D.P. (2002)
heart disease in middle aged Norwegian Applications of PHAs in medicine and
men. Br.Med.J., 294, 671–673. pharmacy. Biopolymers, 4, 91–127.
19. Gross, M.F. and Friedman, M.H. (1998) 32. Grabow, N., Martin, D.P., Schmitz, K.P.,
Dynamics of coronary artery curvature and Sternberg, K. (2010) Absorbable
obtained from biplane cineangiograms. J. polymer stent technologies for vas-
Biomech., 31, 479–484. cular regeneration. J. Chem. Technol.
20. Venkatraman, S., Boey, F., and Lao, L.L. Biotechnol., 85, 744–751.
(2008) Implanted cardiovascular poly- 33. Harte, I.,Birkinshaw, C.,Jones,E.,
mers: natural, synthetic and bio-inspired. Kennedy, J., and DeBarra, E. (2013) The
Prog. Polym. Sci., 33, 853–874. effect of citrate ester plasticizers on the
21. Bertrand, O.F., Sipehia, R., Mongrain, thermal and mechanical properties of
R.,Rodés,J., Tardif,J.C., Bilodeau,L., poly(DL-lactide). J. Appl. Polym. Sci.,
Côté, G., and Bourassa, M.G. (1998) 127, 1997–2003.
Biocompatibility aspects of new stent 34. Letchford, K., Sodegraad, A., Plackett, D.,
technology. J. Am. Coll. Cardiol., 32, Gilchrist, S., and Burt, H. (2011) Lactide
562–571.
and glycolide polymers in Biodegradable
22. Peng, T., Gibula, P., Yao, K.D., and
Polymers in Clinical Use and Clinical
Goosen, M.F.A. (1996) Role of poly- Development, edited by A. Domb, N.
mers in improving the results of stenting Kumar, A. Azra, John Wiley & Sons, Ltd,
in coronary arteries. Biomaterials, 17,
Chichester.
685–694.
35. Vilay, V., Mariatti, M., Ahmad, Z.,
23. Bonsignore, C. (2011) Open Stent
Pasomsouk, K., and Todo, M. (2009)
Design.
Characterization of the mechanical
24. Lanzer, P. (2013) Catheter-Based Car-
and thermal properties and mor-
diovascular Interventions: A Knowledge-
phological behavior of biodegradable
Based Approach, Springer.
25. Ormiston, J.A. and Serruys, P.W.S. (2009) poly(l-lactide)/poly(e-caprolactone) and
Bioabsorbable coronary stents. Circu- poly(l-lactide)/ poly(butylene succinate-
lation: Cardiovasc. Interventions, 2, co-l-lactate) polymeric blends. J. Appl.
Polym. Sci., 114, 1784–1792.
255–260.
36. Sun, H.,Mei,L., Song,C., Cui, X.,and
26. Colombo, A. and Karvouni, E. (2000)
Wang, P. (2006) The in vivo degradation,
Biodegradable stents:“Fulfilling the mis-
sion and stepping away”. Circulation, absorption and excretion of PCL-based
102, 371. implant. Biomaterials, 27, 1735–1740.
27. Rich, S. (2012) Plastics Made from 37. Shibata, M., Inoue, Y., and Miyoshi,
Corn could Save Your Life, http://www. M. (2006) Mechanical properties,
fastcodesign.com/1662001/plastics-made- morphology, and crystallization behav-
from-corn-could-save-your-life (accessed 1 ior of blends of poly(l-lactide) with
October 2014). poly(butylene succinate-co-l-lactate) and
28. ART Technology (2014) http://www.art- poly(butylene succinate). Polymer, 47,
stent.com/technology.php. (accessed 6 3557–3564.
October 2014) 38. Yasuniwa, M. and Satou, T. (2002) Mul-
29. Elixir Medical Corporation (2013) DES- tiple melting behavior of poly(butylene
olve Novolimus Eluting Bioresorbable succinate). I. Thermal analysis of melt-
Coronary Scaffold System, Elixir Med- crystallized samples. J. Polym. Sci. Polym.
ical Corporation, http://elixirmedical. Phys., 40, 2411–2420.
com/index.php?page=ous-desolve 39. Ramcharitar, S. and Serruys, P.W. (2008)
(accessed 1 October 2014). Fully biodegradable coronary stents:
30. Verlinden, R.A.J., Hill, D.J., Kenward, progress to date. Am. J. Cardiovasc.
M.A., Williams, C.D., and Radecka, I. Drugs, 8, 305–314.