Page 43 - Biodegradable Polyesters
P. 43
References 21
DD and LL pair linkages during the solution-spun fibers. Polymer, 23 (11),
ring-opening polymerization of racemic 1587–1593.
lactide. J. Polym. Sci., Part A: Polym. 56. Fraschini, C., Jalabert, M., and
Chem., 35 (9), 1651–1658. Prud’homme, R.E. (2005) Physical char-
47. Coates, G.W., Cheng, M., and acterization of blends of poly(D-lactide)
Chamberlain, B.M. (2000) inventors; and LHRH (a leuprolide decapeptide
(Cornell Research Foundation, Inc., analog). Biomacromolecules, 6 (6),
USA), assignee. Synthesis of stere- 3112–3118.
ospecific and atactic poly(lactic acid)s 57. Tsuji, H. and Ikada, Y. (1996) Blends of
using single-site catalysts. WO Patent aliphatic polyesters. I. Physical proper-
US28886 2001034555, 2001 20001108. ties and morphologies of solution-cast
48. Kister, G., Cassanas, G., and Vert, M. blends from poly(DL-lactide) and
(1997) Effects of morphology, confor- poly(e-caprolactone). J. Appl. Polym.
mation and configuration on the IR and Sci., 60 (13), 2367–2375.
Raman spectra of various poly(lactic 58. Middleton, J.C. and Tipton, A.J. (2000)
acid)s. Polymer, 39 (2), 267–273. Synthetic biodegradable polymers as
49. Kishore, K. and Vasanthakumari, R. orthopedic devices. Biomaterials, 21
(1988) Nucleation parameters for poly- (23), 2335–2346.
mer crystallization from non-isothermal 59. Tsuji, H. and Ikada, Y. (2009) Stereo-
complexation between enantiomeric
thermal analysis. Colloid Polym. Sci.,
poly(lactide)s. Biodegrad. Polym. Blends
266 (11), 999–1002.
Compos. Renewable Resour., 165–190.
50. Tsuji, H. (2005) Poly(lactide) stere-
ocomplexes: formation, structure, 60. Sun, J.,Yu, H.,Zhuang, X.,Chen, X.,
and Jing, X. (2011) Crystallization
properties, degradation, and appli-
behavior of asymmetric PLLA/PDLA
cations. Macromol. Biosci., 5 (7),
blends. J. Phys. Chem. B, 115 (12),
569–597.
2864–2869.
51. Srisa-ard, M. and Baimark, Y. (2010)
61. Schmidt, S.C. and Hillmyer, M.A.
Effects of arm number and arm length
(2001) Polylactide stereocomplex crys-
on thermal properties of linear and
tallites as nucleating agents for isotactic
star-shaped poly(D,L-lactide)s. J. Appl. polylactide. J. Polym. Sci., Part B:
Sci., 10 (17), 1937–1943. Polym. Phys., 39 (3), 300–313.
52. Martino, V.P., Ruseckaite, R.A., and
62. Pistner, H.,Bendix, D.R.,Muhling,J.,
Jimenez, A. (2006) Thermal and
and Reuther, J.F. (1993) Poly(L-lactide):
mechanical characterization of plas-
a long-term degradation study in vivo.
ticized poly (L-lactide-co-D,L-lactide)
Part III. Analytical characterization.
films for food packaging. J. Therm. Biomaterials, 14 (4), 291–298.
Anal. Calorim., 86 (3), 707–712. 63. Masuda, S., Endo, K., and Hasegawa,
53. Shirahama, H., Ichimaru, A., Tsutsumi, K. (2009) inventors; (Teijin Limited,
C., Nakayama, Y., and Yasuda, H. Japan), assignee. Polylactic acid trans-
(2004) Characteristics of the biodegrad- parent films. WO Patent JP67315
ability and physical properties of 2010035911, 2010 20090929.
stereocomplexes between poly(L- 64. Kimura,Y., Fukushima, K.,Miura,S.,
lactide) and poly(D-lactide) copolymers. Takada, M., and Sogo, K. (2003) inven-
J. Polym. Sci.,PartA:Polym.Chem., 43 tors; (Musashino Chemical Laboratory
(2), 438–454. Ltd., Japan; Mutual K. K.), assignee.
54. Weiler, W. and Gogolewski, S. (1996) Manufacture of heat-resistant, ther-
Enhancement of the mechanical prop- mally stable, transparent poly(lactic
erties of polylactides by solid-state acid) stereocomplexes, and mold-
extrusion. I. Poly(D-lactide). Biomateri- ings therefrom. JP Patent 430393
als, 17 (5), 529–535. 2005187626, 2005 20031225.
55. Eling, B., Gogolewski, S., and Pennings, 65. Kandziora, F., Pflugmacher, R.,
A.J. (1982) Biodegradable materials of Kleemann, R., Duda, G., Wise Donald,
poly(L-lactic acid). 1. Melt-spun and L., Trantolo Debra, J. et al. (2002)