Page 43 - Biodegradable Polyesters
P. 43

References  21

                   DD and LL pair linkages during the  solution-spun fibers. Polymer, 23 (11),
                   ring-opening polymerization of racemic  1587–1593.
                   lactide. J. Polym. Sci., Part A: Polym.  56. Fraschini, C., Jalabert, M., and
                   Chem., 35 (9), 1651–1658.       Prud’homme, R.E. (2005) Physical char-
                47. Coates, G.W., Cheng, M., and   acterization of blends of poly(D-lactide)
                   Chamberlain, B.M. (2000) inventors;  and LHRH (a leuprolide decapeptide
                   (Cornell Research Foundation, Inc.,  analog). Biomacromolecules, 6 (6),
                   USA), assignee. Synthesis of stere-  3112–3118.
                   ospecific and atactic poly(lactic acid)s  57. Tsuji, H. and Ikada, Y. (1996) Blends of
                   using single-site catalysts. WO Patent  aliphatic polyesters. I. Physical proper-
                   US28886 2001034555, 2001 20001108.  ties and morphologies of solution-cast
                48. Kister, G., Cassanas, G., and Vert, M.  blends from poly(DL-lactide) and
                   (1997) Effects of morphology, confor-  poly(e-caprolactone). J. Appl. Polym.
                   mation and configuration on the IR and  Sci., 60 (13), 2367–2375.
                   Raman spectra of various poly(lactic  58. Middleton, J.C. and Tipton, A.J. (2000)
                   acid)s. Polymer, 39 (2), 267–273.  Synthetic biodegradable polymers as
                49. Kishore, K. and Vasanthakumari, R.  orthopedic devices. Biomaterials, 21
                   (1988) Nucleation parameters for poly-  (23), 2335–2346.
                   mer crystallization from non-isothermal  59. Tsuji, H. and Ikada, Y. (2009) Stereo-
                                                   complexation between enantiomeric
                   thermal analysis. Colloid Polym. Sci.,
                                                   poly(lactide)s. Biodegrad. Polym. Blends
                   266 (11), 999–1002.
                                                   Compos. Renewable Resour., 165–190.
                50. Tsuji, H. (2005) Poly(lactide) stere-
                   ocomplexes: formation, structure,  60. Sun, J.,Yu, H.,Zhuang, X.,Chen, X.,
                                                   and Jing, X. (2011) Crystallization
                   properties, degradation, and appli-
                                                   behavior of asymmetric PLLA/PDLA
                   cations. Macromol. Biosci., 5 (7),
                                                   blends. J. Phys. Chem. B, 115 (12),
                   569–597.
                                                   2864–2869.
                51. Srisa-ard, M. and Baimark, Y. (2010)
                                                61. Schmidt, S.C. and Hillmyer, M.A.
                   Effects of arm number and arm length
                                                   (2001) Polylactide stereocomplex crys-
                   on thermal properties of linear and
                                                   tallites as nucleating agents for isotactic
                   star-shaped poly(D,L-lactide)s. J. Appl.  polylactide. J. Polym. Sci., Part B:
                   Sci., 10 (17), 1937–1943.       Polym. Phys., 39 (3), 300–313.
                52. Martino, V.P., Ruseckaite, R.A., and
                                                62. Pistner, H.,Bendix, D.R.,Muhling,J.,
                   Jimenez, A. (2006) Thermal and
                                                   and Reuther, J.F. (1993) Poly(L-lactide):
                   mechanical characterization of plas-
                                                   a long-term degradation study in vivo.
                   ticized poly (L-lactide-co-D,L-lactide)
                                                   Part III. Analytical characterization.
                   films for food packaging. J. Therm.  Biomaterials, 14 (4), 291–298.
                   Anal. Calorim., 86 (3), 707–712.  63. Masuda, S., Endo, K., and Hasegawa,
                53. Shirahama, H., Ichimaru, A., Tsutsumi,  K. (2009) inventors; (Teijin Limited,
                   C., Nakayama, Y., and Yasuda, H.  Japan), assignee. Polylactic acid trans-
                   (2004) Characteristics of the biodegrad-  parent films. WO Patent JP67315
                   ability and physical properties of  2010035911, 2010 20090929.
                   stereocomplexes between poly(L-  64. Kimura,Y., Fukushima, K.,Miura,S.,
                   lactide) and poly(D-lactide) copolymers.  Takada, M., and Sogo, K. (2003) inven-
                   J. Polym. Sci.,PartA:Polym.Chem., 43  tors; (Musashino Chemical Laboratory
                   (2), 438–454.                   Ltd., Japan; Mutual K. K.), assignee.
                54. Weiler, W. and Gogolewski, S. (1996)  Manufacture of heat-resistant, ther-
                   Enhancement of the mechanical prop-  mally stable, transparent poly(lactic
                   erties of polylactides by solid-state  acid) stereocomplexes, and mold-
                   extrusion. I. Poly(D-lactide). Biomateri-  ings therefrom. JP Patent 430393
                   als, 17 (5), 529–535.           2005187626, 2005 20031225.
                55. Eling, B., Gogolewski, S., and Pennings,  65. Kandziora, F., Pflugmacher, R.,
                   A.J. (1982) Biodegradable materials of  Kleemann, R., Duda, G., Wise Donald,
                   poly(L-lactic acid). 1. Melt-spun and  L., Trantolo Debra, J. et al. (2002)
   38   39   40   41   42   43   44   45   46   47   48