Page 44 - Biodegradable Polyesters
P. 44

22  1 Biodegradable Polyesters: Synthesis, Properties, Applications

                        Biomechanical analysis of biodegrad-  coated paper or paperboard, its manu-
                        able interbody fusion cages augmented  facture and use for package products.
                        with poly(propylene glycol-co-fumaric  WO Patent FI597 2000001530, 2000
                        acid). Spine (Philadelphia, 1976), 27  19990706.
                        (15), 1644–1651.              75. Higgins, N.A. (1950) inventor (E. I.
                     66. Madhavan Nampoothiri, K.,      du Pont de Nemours & Co.), assignee.
                        Nair Nimisha, R., and John, R.P.  Polymers of hydroxyacetic acid and its
                        (2010) An overview of the recent  ester. US Patent 1950-190877 2676945,
                        developments in polylactide (PLA)  1954 19501018.
                        research. Bioresour. Technol., 101 (22),  76. Williams, D.F. and Mort, E. (1977)
                        8493–8501.                      Enzyme-accelerated hydrolysis of polyg-
                     67. Sinclair, R.G. and Gynn, G.M. (1972)  lycolic acid. J. Bioeng., 1 (3), 231–238.
                        Preparation and Evaluation of Glycolic  77. Chu, C.C. (1981) The in-vitro
                        and Lactic Acid-Based Polymers for  degradation of poly(glycolic acid)
                        Implant Devices Used in Management  sutures–effect of pH. J. Biomed. Mater.
                        of Maxillofacial Trauma. II,Battelle  Res., 15 (6), 795–804.
                        Memorial Institute, Columbus, OH.  78. Sporzynski, A., Kocay, W., and Briscoe,
                     68. Sinclair, R.G. (1973) Slow-release pes-  H.V.A. (1949) A new method of
                        ticide system. Polymers of lactic and  preparing glycolide. Recl. Trav. Chim.
                        glycolic acids as ecologically beneficial,
                                                        Pays-Bas Belg., 68, 613–618.
                        cost-effective encapsulating materials.
                                                      79. Chujo, K., Kobayashi, H., Suzuki, J.,
                        Environ. Sci. Technol., 7 (10), 955–956.  Tokuhara, S., and Tanabe, M. (1967)
                     69. Manninen, M.J. and Pohjonen, T.  Ring-opening polymerization of glycol-
                        (1993) Intramedullary nailing of the
                                                        ide. Makromol. Chem., 100, 262–266.
                        cortical bone osteotomies in rabbits
                                                      80. Grabar, D.G. (1970) Crystallization
                        with self-reinforced poly-L-lactide
                                                        of poly(glycolic acid) from the melt.
                        rods manufactured by the fibrillation
                                                        Microscope, 18 (3), 203–213.
                        method. Biomaterials, 14 (4), 305–312.
                                                      81. Cooper, D.R., Sutton, G.J., and Tighe,
                     70. Conn, R.E., Kolstad, J.J., Borzelleca, J.F.,
                                                        B.J. (1973) Poly(alpha -ester) degrada-
                        Dixler, D.S., Filer, L.J. Jr., LaDu, B.N. Jr.,
                        et al. (1995) Safety assessment of poly-  tion studies. V. Thermal degradation of
                        lactide (PLA) for use as a food-contact  polyglycolide. J. Polym. Sci., Part A-1,
                        polymer. Food Chem. Toxicol., 33 (4),  11 (8), 2045–2056.
                                                      82. Pal, K.M. (1998) Urinary bladder wall
                        273–283.
                                                        repair: what suture to use? Br. J. Urol.,
                     71. Auras, R., Harte, B., and Selke, S.
                                                        82 (2), 196–198.
                        (2004) An overview of polylactides as
                        packaging materials. Macromol. Biosci.,  83. Jain, R., Shah, N.H., Malick, A.W.,
                        4 (9), 835–864.                 and Rhodes, C.T. (1998) Controlled
                     72. Kharas, G.B. and Nemphos, S.P. (1992)  drug delivery by biodegradable
                        inventors; (Novacor Chemicals (Inter-  polyester devices: different prepara-
                        national) S.A., Switz.), assignee.  tive approaches. Drug Dev. Ind. Pharm.,
                        Flexible, biodegradable polylactide  24 (8), 703–727.
                        blends. EP Patent 304651 515203, 1992  84. Talja, M., Valimaa, T., Tammela, T.,
                        19920521.                       Petas, A., and Tormala, P. (1997) Bioab-
                     73. Lampinen,J., Naettinen, K.,and Aalto,  sorbable and biodegradable stents in
                        S. (2009) inventors; (Valtion Teknillinen  urology. J. Endourol., 11 (6), 391–397.
                        Tutkimuskeskus, Finland), assignee.  85. Athanasiou, K.A., Niederauer, G.G.,
                        Impact-resistant biodegradable compo-  and Agrawal, C.M. (1996) Steriliza-
                        sitions for use as packaging materials.  tion, toxicity, biocompatibility and
                        WO Patent FI50142 2009103856, 2009  clinical applications of polylactic
                        20090223.                       acid/polyglycolic acid copolymers.
                     74. Kuusipalo, J., Nevalainen, K., and  Biomaterials, 17 (2), 93–102.
                        Penttinen T. (1999) inventors; (Enso  86. Parsons, J.R. (1985) Resorbable mate-
                        Oy, Finland), assignee. Compostable  rials and composites. New concepts in
   39   40   41   42   43   44   45   46   47   48   49