Page 45 - Biodegradable Polyesters
P. 45
References 23
orthopedic biomaterials. Orthopedics, 8 97. Labet, M. and Thielemans, W. (2009)
(7), 907–915. Synthesis of polycaprolactone: a review.
87. Laufman, H. and Rubel, T. (1977) Chem. Soc. Rev., 38 (12), 3484–3504.
Synthetic absorbable sutures. Surg. 98. Windaus, A. and Klanhardt, F. (1921)
Gynecol. Obstet., 145 (4), 597–608. A method for the degradation of acids
88. Tajirian Ani, L. and Goldberg, D.J. of the glutaric acid series. Ber. Dtsch.
(2010) A review of sutures and other Chem. Ges. B, 54B, 581–587.
skin closure materials. J. Cosmet. Laser 99. Van Natta, F.J., Hill, J.W., and
Ther., 12 (6), 296–302. Carothers, W.H. (1934) Polymer-
89. Miller, R.A., Brady, J.M., Cutright, ization and ring formation. XXII.
D.E. (1977) Degradation rates of oral e-Caprolactone and its polymers. J. Am.
resorbable implants(polylactates and Chem. Soc., 56, 455–457.
polyglycolates): rate modification with 100. Berens, A.R. (1958) inventor (B. F.
changes in PLA/PGA copolymer ratios, Goodrich Co.), assignee. Copolymers
J. Biomed. Mat. Res. Part A., 11 (5), of haloethylenes with esters of poly-
711–719. caprolactone. US Patent 1958-707684
90. Jalil, R. and Nixon, J.R. (1990) 2945012, 1960 19580108.
Biodegradable poly(lactic acid) and 101. Baeder, E. and Rohe, L. (1969)
poly(lactide-co-glycolide) micro- inventors; (Deutsche Gold- und
capsules: problems associated with Silber-Scheideanstalt vorm. Roessler),
preparative techniques and release assignee. Possibly branched polyester-
properties. J. Microencapsul., 7 (3), polyols from lactones. DE Patent
297–325. 1969-1955848 1955848, 1971 19691106.
91. Lima, K.M. and Rodrigues Junior, J.M. 102. Hostettler, F. and Lombardi, F.G. (1969)
(1999) Poly-DL-lactide-co-glycolide inventors; (Inter-Polymer Research
microspheres as a controlled release Corp.), assignee. Polyesters and deriva-
antigen delivery system. Braz. J. Med. tives. CA Patent 1969-46462 943293,
Biol. Res., 32 (2), 171–180. 1974 19690321.
92. Panyam, J. and Labhasetwar, V. (2004) 103. Frank J. van Natta, Julian W., Hill, and
Targeting intracellular targets. Curr. Wallace H., Carothers (1934) Studies
Drug Delivery, 1 (3), 235–247. of Polymerization and ring formation.
93. Menei, P., Montero-Menei, C., Venier, XXIII. epsilon-caprolactone and its
M.-C., and Benoit, J.-P. (2005) polymers, J. Am. Chem. Soc., 56 (2),
Drug delivery into the brain using 455–457
poly(lactide-co-glycolide) microspheres. 104. Magnus, G. (1965) Poly-e-caprolactone-
Expert Opin. Drug Delivery, 2 (2), based urethans. Rubber Age (New York),
363–376. 97 (4), 86–93.
94. Mundargi, R.C., Babu, V.R., 105. Cardy, C.F. (1981) inventor (Interox
Rangaswamy, V., Patel, P., and Chemicals Ltd., UK), assignee. Com-
Aminabhavi, T.M. (2008) Nano/micro positions comprising viscoelastic liquid
technologies for delivering macro- compounds. EP Patent 1981-103673
molecular therapeutics using poly(DL- 41629, 1981 19810513.
lactide-co-glycolide) and its derivatives. 106. Busfield, W.K. (1982) Dynamic
J. Controlled Release, 125 (3), 193–209. mechanical properties of some
95. Ashammakhi, N. and Rokkanen, P. polycaprolactone-based, crosslinked,
(1997) Absorbable polyglycolide devices crystallizable polyurethanes. J. Macro-
in trauma and bone surgery. Biomateri- mol. Sci., Chem., A17 (2), 297–309.
als, 18 (1), 3–9. 107. Gnanou, Y. and Rempp, P. (1987) Syn-
96. Waris, E., Konttinen, Y.T., Ashammakhi, thesis of poly(epsilon-caprolactone)
N., Suuronen, R., and Santavirta, S. macromonomers. Makromol. Chem.-
(2004) Bioabsorbable fixation devices in Macromol. Chem. Phys., 188 (10),
trauma and bone surgery: current clin- 2267–2275.
ical standing. Expert Rev. Med. Devices, 108. Schindler, A., Jeffcoat, R., Kimmel, G.L.,
1 (2), 229–240. Pitt, C.G., Wall, M.E., and Zweidinger,