Page 233 - Biofuels for a More Sustainable Future
P. 233

208   Biofuels for a More Sustainable Future


          biodiesel should follow the full biodiesel production system developed
          under SATREPS Project, while Hibiscus-Vernicia biodiesel should adhere
          to the oil only biodiesel production system that omits the coproducts in oil
          extraction phase.


          Acknowledgment

          This study was financially supported by a Science and Technology Research Partnership for
          Sustainable Development (SATREPS Project), JST-JICA.


          References
          Achten, W., 2010. Sustainability Evaluation of Biodiesel From Jatropha curcas L. A Life Cycle
             Oriented Study. University of Leuven, Belgium.
          Air Quality Expert Group, 2011. Road Transport Biofuels: Impact on UK Air Quality.
             Advice Note Prepared for Department for Environment, Food and Rural Affairs. Scot-
             tish Government; Welsh Assembly Government; and Department of the Environment in
             Northern Ireland, London.
          Al Shooshi, W.G.A., 1997. Chemical Composition of Some Roselle (Hibiscus sabdariffa)
             Genotypes. University of Khartoum, Khartoum North.
          Anwar, F., Rashid, U., Ashraf, M., Nadeem, M., 2010. Okra (Hibiscus esculentus) seed oil
             for biodiesel production. Appl. Energy 87, 779–785. https://doi.org/10.1016/j.
             apenergy.2009.09.020.
          Atabani, A.E., Silitonga, A.S., Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., Badruddin, I.A.,
             Fayaz, H., 2013. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty
             acid compositions, biodiesel production, characteristics, engine performance and emis-
             sions production. Renew. Sust. Energ. Rev. 18, 211–245. https://doi.org/10.1016/j.
             rser.2012.10.013.
          Azadi,P.,Brownbridge,G.,Mosbach,S.,Smallbone,A.,Bhave,A.,Inderwildi,O.,Kraft, M.,
             2014. The carbon footprint and non-renewable energy demand of algae-derived biodie-
             sel. Appl. Energy 113, 1632–1644. https://doi.org/10.1016/j.apenergy.2013.09.027.
          Berna ´l, M., De Cassia, R., Schneider, D.S., Machado, E.L., 2014. Environmental assessment
             of the Tung cultivation through life cycle analysis. Int. J. Eng. Technol. 3, 70–74.
             https://doi.org/10.14419/ijet.v3i1.1597.
          BP p.l.c, 2016. BP Energy Outlook—2016 Edition: Outlook to 2035. http://www.bp.com/
             content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-
             2016.pdf. (accessed 2017.01.01).
          Brewer, R., Nagashima, J., Kelley, M., Heskett, M., Rigby, M., 2013. Risk-based evaluation
             of total petroleum hydrocarbons in vapor intrusion studies. Int. J. Environ. Res. Public
             Health 10, 2441–2467. https://doi.org/10.3390/ijerph10062441.
          Chandrashekar, L.A., Mahesh, N.S., Gowda, B., Hall, W., 2012. Life cycle assessment of
             biodiesel production from pongamia oil in rural Karnataka. Agric. Eng. Int. CIGR J.
             14, 67–77.
          Charman, N., Edmonds, N., Egyed, M., Rouleau, M., 2012. Human Health Risk Assess-
             ment for Biodiesel Production, Distribution and Use in Canada. Health Canada, Ottawa.
          CheHafizan, Noor, Z.Z., 2013. Biofuel: advantages and disadvantages based on life cycle
             assessment (LCA) perspective. J. Environ. Res. Dev. 7, 1444–1449.
          Dalal, K., Svanstr€om, L., 2015. Economic burden of disability adjusted life years (DALYs) of
             injuries. Health 7, 487–494. https://doi.org/10.4236/health.2015.74058.
   228   229   230   231   232   233   234   235   236   237   238