Page 77 - Biofuels for a More Sustainable Future
P. 77
Triple bottom line, sustainability and sustainability assessment, an overview 69
Ekener, E., Hansson, J., Gustavsson, M., 2018. Addressing positive impacts in social LCA—
discussing current and new approaches exemplified by the case of vehicle fuels. Int. J. Life
Cycle Assess. 23 (3), 556–568.
Ekener-Petersen, E., H€oglund, J., Finnveden, G., 2014. Screening potential social impacts of
fossil fuels and biofuels for vehicles. Energy Policy 73, 416–426.
Finnveden, G., Moberg, A., 2005. Environmental systems analysis tools—an overview.
J. Clean. Prod. 13, 1165–1173.
Gerbens-Leenes, P.W., Hoekstra, A.Y., Van der Meer, T.H., 2009. The water footprint of
energy from biomass: a quantitative assessment and consequences of an increasing share
of bio-energy in energy supply. Ecol. Econ. 68 (4), 1052–1060.
Hacking, T., Guthrie, P., 2008. A framework for clarifying the meaning of triple bottom-
line, integrated and sustainability assessment. Environ. Impact Assess. Rev. 28 (2–3),
73–89.
H€ayh€a, T., Lucas, P.L., van Vuuren, D.P., Cornell, S.E., Hoff, H., 2016. From planetary
boundaries to national fair shares of the global safe operating space—how can the scales
be bridged? Glob. Environ. Chang. 40, 60–72.
Interlenghi, S.F., de Almeida Bruno, P., Araujo, O.D.Q.F., de Medeiros, J.L., 2017. Social
and environmental impacts of replacing transesterification agent in soybean biodiesel
production: multi-criteria and principal component analyses. J. Clean. Prod.
168, 149–162.
IRP, 2017. Bringezu, S., Ramaswami, A., Schandl, H., O’Brien, M., Pelton, R.,
Acquatella, J., Ayuk, E., Chiu, A., Flanegin, R., Fry, J., Giljum, S., Hashimoto, S.,
Hellweg, S. (Eds.), Assessing Global Resource Use: A Systems Approach to Resource
Efficiency and Pollution Reduction. United Nations Environment Programme, Nairobi.
ISO (International Organization for Standardization), 2006. ISO 14040. Environmental
Management—Life Cycle Assessment—Principles and framework. ISO, Geneva.
Karabulut, A.A., Crenna, E., Sala, S., Udias, M.A., 2018. A proposal for the integration of the
ecosystem-water-food-land-energy (EWFLE) nexus concept into the life cycle assess-
ment: a synthesis matrix for food security. J. Clean. Prod. 172, 3874–3889. https://
doi.org/10.1016/j.jclepro.2017.05.092.
Keles, D., Choumert-Nkolo, J., Motel, P.C., K er e, E.N., 2018. Does the expansion of bio-
fuels encroach on the forest? J. For. Econ. 33, 75–82.
Koh, L.P., Ghazoul, J., 2008. Biofuels, biodiversity, and people: understanding the conflicts
and finding opportunities. Biol. Conserv. 141 (10), 2450–2460.
Liew, W.H., Hassim, M.H., Ng, D.K., 2014. Review of evolution, technology and sustain-
ability assessments of biofuel production. J. Clean. Prod. 71, 11–29.
Lo ´pez-Dı ´az, D.C., Lira-Barraga ´n, L.F., Rubio-Castro, E., Serna-Gonza ´lez, M., El-
Halwagi, M.M., Ponce-Ortega, J.M., 2018. Optimization of biofuels production via
a water–energy–food nexus framework. Clean Techn. Environ. Policy 20 (7),
1443–1466.
Lovett, J.C., Hards, S., Clancy, J., Snell, C., 2011. Multiple objectives in biofuels sustainabil-
ity policy. Energy Environ. Sci. 4 (2), 261–268.
Macombe, C., Leskinen, P., Feschet, P., Antikainen, R., 2013. Social life cycle assessment of
biodiesel production at three levels: a literature review and development needs. J. Clean.
Prod. 52, 205–216.
¸
Malca, J., Freire, F., 2011. Life-cycle studies of biodiesel in Europe: a review addressing the
variability of results and modeling issues. Renew. Sust. Energ. Rev. 15 (1), 338–351.
Martin, E.W., Chester, M.V., Vergara, S.E., 2015. Attributional and consequential life-cycle
assessment in biofuels: a review of recent literature in the context of system boundaries.
Curr. Sustain./Renew. Energ. Rep. 2 (3), 82–89.
Martire, S., Castellani, V., Sala, S., 2015. Carrying capacity assessment of forest biomass for
sustainable energy production at local scale. Resour. Conserv. Recycl. 94, 11–20.