Page 101 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 101

78  BIOMECHANICS OF THE HUMAN BODY

                       equilibrium of a tube element in its deformed state is expressed in a lagrangian (material) coordi-
                                   ˆ
                                 ˆ n
                                  t
                       nate system ( , , q), which is attached to the surface of the tube (Fig. 3.7).
















                                        FIGURE 3.7  Mechanics of the arterial wall: (a) axisym-
                                        metric wall deformation; (b) element of the tube wall under
                                        biaxial loading. The Ts are longitudinal and circumferential
                                        internal stresses.


                         The first-order approximations for the axial (u ) and radial (v ) components of the fluid velocity,
                                                          1          1
                       and the pressure (P ) as a function of time (t) and space (r, z), are given by
                                     1
                                                    ⎡      ⎛  r ⎞ ⎤
                                                    ⎢    J α 0  ⎟ ⎥
                                                          0 ⎜
                                                  A 1 ⎢    ⎝  R ⎠    ⎡  ⎛  z ⎞ ⎤
                                                               0 ⎥
                                        ur z t) =    1+  m        exp iω  t  −  ⎠ ⎥       (3.25)
                                             ,
                                         (,
                                                                     ⎢
                                         1
                                                 cρ F ⎣ ⎢  J (α 0 )  ⎥ ⎦ ⎦  ⎣  ⎝  c  ⎦
                                                           0
                                                    ⎡       ⎛   r ⎞ ⎤
                                                    ⎢     J α 0  ⎟ ⎥
                                                           1 ⎜
                                                A β  r      ⎝  R ⎠    ⎡  ⎛  z ⎞ ⎤
                                                                0 ⎥
                                       vr z t) =  1  i  ⎢  +  m     exp iω  t  −          (3.26)
                                           ,
                                        (,
                                       1            ⎢            ) ⎥  ⎢  ⎝   ⎠ ⎥
                                               cρ    R     α J (α     ⎣     c  ⎦
                                                 F  ⎣ ⎣  0   0  0  ⎦
                                                            ⎡  ⎛  z ⎞ ⎤
                                                Pz t) =  A exp ⎢ iω  t −                  (3.27)
                                                  (,
                                                 1
                                                        1
                                                            ⎣  ⎝  c ⎠ ⎥ ⎦
                       The dimensionless parameters m, x, k, t , and F are related to the material properties and defined
                                                    q    10
                       as
                                       2  +  x 2 [ σ − 1 (  −τ θ )]  Eh      ρ h
                                                                              T
                                    m =                 x =               k =
                                                                   ρ
                                          −
                                       x 1 τ θ ) F − 2 ]σ   1 (  −σ 2 ) R ρ c 2  ρ R 0
                                        [(
                                                                              F
                                                                  0 F
                                               10
                                                                                / 12
                                                                         ⎛
                                                                           Eh ⎞
                                    c =            2 • c 0           c =
                                                                      0
                                                   2
                                                              /
                                                            2 12 12
                                                                            0 F ⎠
                                                 + )
                                          + )
                                       {( k 2 +[( k 2 −  k 8 1− σ )]]}  /  ⎜ ⎝ 2R ρ  ⎟
                                                        (
                                                                                          (3.28)
                                          Eh                     2 J (α  )
                                                                  1
                                   τ θ  =  T  0 θ  1−σ  T = PPR  F =  α 00  0 0 )
                                                  0 θ
                                                             10
                                                      00
                                                                  J (α
                                       ω R 2               ω R
                                                   3
                                    α =   0   α 0 2  =  i α  β =  0
                                        c                   c c
   96   97   98   99   100   101   102   103   104   105   106