Page 400 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 400
BIOCERAMICS 377
15.5 SUMMARY
In summary, bioceramics have a long clinical history, especially in skeletal reconstruction and regen-
eration. Bioceramics are classified as relatively inert (a minimal tissue response is elicited and a layer
of fibrous tissue forms adjacent to the implant), surface active (partially soluble, resulting in surface
ion exchange with the microenvironment and leading to a direct chemical bond with tissue), and bulk
bioactive (fully resorbable, with the potential to be completely replaced with de novo tissue).
Ceramics are processed via conventional materials science strategies, as well as strategies inspired
by nature. The biomimetic approaches discussed in Sec. 15.4, along with all other strategies to repro-
duce the design rules of biological systems, do not completely mimic nature. Instead, just selected
biological aspects are mimicked. However, if the selected biomimicry is rationally designed into bio-
material, then the biological system will be able to respond in a more controlled, predictable, and
efficient manner, providing an exciting new arena for biomaterials research and development.
ACKNOWLEDGMENTS
Parts of the author’s research discussed in this chapter were supported by NIH/NIDCR R01 DE
013380 and R01 DE015411.
REFERENCES
Abe, Y., Kokubo, T., Yamamuro, T., J. Mater. Sci.: Mater. Med. 1:233–238, 1990.
Allen, M., Myer, B., Rushton, N., J. Biomed. Mater. Res. (Appl. Biomat.) 58:319–328, 2001.
Attawia, M. A., Devin, J. E., Laurencin, C. T., J. Biomed. Mater. Res. 29:843–848, 1995.
Azevedo, H. S., Leonor, I. B., Alves, C. M., Reis, R. L., Mat. Sci. Eng. C.—Bio. S. 25:169, 2005.
Barroug, A., Glimcher, M. J., J. Orthop. Res. 20:274, 2002.
Bokros, J. C., Trans. Biomed. Mater. Res. Symp. 2:32–36, 1978.
Bokros, J. C., LaGrange, L. D., Schoen, G. J., In: Chemistry and Physics of Carbon, Vol. 9, Walker, P. L., (ed.),
New York, Dekker, pp. 103–171, 1972.
Boutin, P., Christel, P., Dorlot, J. M., Meunier, A., de Roquancourt, A., Blanquaert, D., Herman, S., Sedel, L.,
Witvoet, J., J. Biomed. Mater. Res. 22:1203–1232, 1988.
Bunker, B. C., Rieke, P. C,, Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J.,
Virden, J. W., McVay, G. L., Science. 264:48–55, 1994.
Cales, B., Stefani, Y., In: Biomedical Engineering Handbook, Bronzino, J. D., (ed.), Boca Raton, FL, CRC Press,
pp. 415–452, 1995.
Campbell, A. A., Fryxell, G. E., Linehan, J. C., Graff, G. L., J. Biomed. Mater. Res. 32:111–118, 1996.
Chai, C. S., Gross, K. A., Ben-Nissan, B., Biomaterials. 19:2291–2296, 1998.
Chou, Y. F., Huang, W., Dunn, J. C. Y., Miller, T. A., Wu, B. M., Biomaterials. 26:285–295, 2005.
Christel, P., Meunier, A., Heller, M., Torre, J. P., Peille, C. N., J. Biomed. Mater. Res. 23:45–61, 1989.
Christel, P., Meunier, A., Leclercq, S., Bouquet, P., Buttazzoni, B., J. Biomed. Mater. Res.: Appl. Biomat.
21(A2):191–218, 1987.
Combes, C., Rey, C., Biomaterials. 23:2817–2823, 2002.
Combes, C., Rey, C., Freche, M., J. Mater. Sci. Mater. Med. 10:153, 1999.
Cook, S. D., Thomas, K. A., Dalton, J. E., Volkman, T. K., Whitecloud, T. S., III, Kay, J. F., J. Biomed. Mater.
Res. 26:989–1001, 1992.
Davidson, J. A., Clin. Orthop. 294:361–178, 1993.
de Bruijn, J. D., van Blitterswijk, C. A., Davies, J. E., J. Biomed. Mater. Res. 29: 89–99, 1995.