Page 239 - Biomimetics : Biologically Inspired Technologies
P. 239

Bar-Cohen : Biomimetics: Biologically Inspired Technologies  DK3163_c007 Final Proof page 225 21.9.2005 11:42am




                    Bio-Nanorobotics                                                            225

                                                    REFERENCES

                    Archives of Science. (2001). All about entropy, the laws of thermodynamics, and order from disorder. http://
                         www.entropylaw.com, (c) Copyright 2001.
                    Amendola V, Fabbrizzi L, Mangano C, Pallavicini P. (2001). Molecular machines based on metal ion
                         translocation. Acc. Chem. Res. 34: 488–93.
                    Bachand GD, Montemagno CD. (2000). Constructing organic/inorganic NEMS devices powered by biomo-
                         lecular motors. Biomed. Microdev. 2: 179–84.
                    Balzani V, Lopez MG, Stoddart JF. (1998). Molecular machines. Acc. Chem. Res. 31: 405–14.
                    Berg HC. (1974). Dynamic properties of bacterial flagellar motors. Nature 249: 77–9.
                    Berg HC. (2000). Motile behavior of bacteria. Phys. Today 53: 24–9.
                    Block SM. (1998). Kinesin: what gives? Cell 93: 5–8.
                    Block SM, Goldstein LS, Schnapp BJ. (1990). Bead movement by single kinesin molecules studied with
                         optical tweezers. Nature 348: 348–52.
                    Bohm KJ, Steinmetzer P, Daniel A, Baum M, Vater W, Unger E. (1997) Kinesin-driven microtubule motility
                         in the presence of alkaline-earth metal ions: indication for a calcium ion-dependent motility. Cell
                         Motil. Cytoskeleton 37: 226–31.
                    Boyer PD. (1998). Energy, life and ATP (Nobel Lecture). Angewandte Chemie International Edition 37:
                         2296–307.
                    Braha O, Walker B, Cheley S, Kasianowicz JJ, Song L, Gouaux JE, Bayley H. (1997). Designed pores as
                         components for biosensors. Chem. Biol. 4: 497–505.
                    Drexler EK. (1992). Nanosystems: Molecular Machinery, Manufacturing and Computation, John Wiley and
                         Sons.
                    Farrell CM, Mackey AT, Klumpp LM, Gilbert SP. (2002). The role of ATP hydrolysis for kinesin processivity.
                         J. Biol. Chem. 277: 17079–87.
                    Ferguson JA, Boles TC, Adams CP, Walt DR. (1996). A fiber-optic DNA biosensor microarray for the analysis
                         of gene expression. Nat. Biotechnol. 14: 1681–4.
                    Finer JT, Simmons RM, Spudich JA. (1994). Single myosin molecule mechanics: piconewton forces and
                         nanometre steps. Nature 368: 113–9.
                    Foresight Institute. (2000). Molecular Nanotechnology Guidelines: Draft Version 3.7, 4 June 2000.
                    Frasch WD. (2000). Vanadyl as a probe of the function of the F1-ATPase-Mg 2þ  cofactor. J. Bioenergetics
                         Biomembr. 32: 2000.
                    Freitas Jr., RA. (1999). Nanomedicine, Volume I: Basic Capabilities, Landes Bioscience, Georgetown, Texas,
                         1999.
                    Freitas Jr., RA. (2003). Nanomedicine, Volume IIA: Biocompatibility, Landes Bioscience, Georgetown, Texas,
                         2003.
                    Freitas Jr., RA, Merkle. RC. (2004). Kinematic Self-Replicating Machines, Landes Bioscience, Georgetown,
                         Texas; http://www.MolecularAssembler.com/KSRM.htm
                    Hackney DD. (1996). The kinetic cycles of myosin, kinesin, and dynein. Annu. Rev. Physiol. 58: 731–50.
                    Harada A. (2001). Cyclodextrin-based molecular machines. Acc. Chem. Res. 34 (16): 456–64.
                    Hellinga HW, Richards FM. (1991). Construction of new ligand binding sites in proteins of known structure. I.
                         Computer-aided modeling of sites with pre-defined geometry. J Mol. Biol. 222: 763–85.
                    Hess H, Vogel V. (2001). Molecular shuttles based on motor proteins: active transport in synthetic environ-
                         ments. J. Biotechnol. 82: 67–85.
                    Howard J, Hudspeth AJ, Vale RD. (1989). Movement of microtubules by single kinesin molecules. Nature
                         342: 154–8.
                    Hu J, Zhang Y, Gao H, Li M, Hartman U. (2002). Artificial DNA patterns by mechanical nanomanipulation.
                         Nanoletters 2: 55–7.
                    Khan S, Zhao R, Reese TS. (1998). Architectural features of the Salmonella typhimurium flagellar motor
                         switch revealed by disrupted C-rings. J. Struct. Biol. 122: 311–9.
                    Kinosita K Jr., Yasuda R, Noji H, Adachi K (2000). A rotary molecular motor that can work at near 100%
                         efficiency. Phil. Trans. R. Soc. Lond. B 355: 473–489.
                    Kitamura K, Tokunaga M, Iwane AH, Yanagida T. (1999). A single myosin head moves along an actin
                         filament with regular steps of 5.3 nanometres. Nature 397: 129–34.
   234   235   236   237   238   239   240   241   242   243   244