Page 240 - Biomimetics : Biologically Inspired Technologies
P. 240

Bar-Cohen : Biomimetics: Biologically Inspired Technologies  DK3163_c007 Final Proof page 226 21.9.2005 11:42am




                    226                                     Biomimetics: Biologically Inspired Technologies

                    Koumura N, Zijlstra RW, van Delden RA, Harada N, Feringa BL. (1999). Light-driven monodirectional
                          molecular rotor. Nature 401: 152–5.
                    Liu H, Schmidt JJ, Bachand GD, Rizk SS, Looger LL, Hellinga HW, Montemagno CD. (2002). Control of a
                          biomolecular motor-powered nanodevice with an engineered chemical switch. Nat. Mater. 1: 173–7.
                    Mahadevan L, Matsudaira P. (2000). Motility powered by supramolecular springs and ratchets. Science 288:
                          95–100.
                    Manning P, McNeil C. (2001). Microfabricated Multi-Analyte Amperometric Sensors. http://nanocentre.
                          ncl.ac.uk/
                    Mao C, Sun W, Shen Z, Seeman NC. (1999). A nanomechanical device based on the B–Z transition of DNA.
                          Nature 397: 144–6.
                    Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE. (1999). Myosin-V is a processive actin-
                          based motor. Nature 400: 590–3.
                    MIT Media Laboratory Nanoscale Sensing. http://www.media.mit.edu/nanoscale/
                    Montemagno CD, Bachand GD. (1999). Constructing nanomechanical devices powered by biomolecular
                          motors. Nanotechnology 10: 225–331.
                    Namba K, Vonderviszt F. (1997). Molecular structure of bacterial flagellum. Quart. Rev. Biophys. 30(1): 1–65.
                    Noji H, Yasuda R, Yoshida M, Kinosita K, Jr. (1997). Direct observation of the rotation of F1-ATPase. Nature
                          386: 299–302.
                    PDB: 1JFP, Yeagle PL, Choi G, Albert AD. (2001). Studies on the structure of the G-protein-coupled receptor
                          rhodopsin including the putative G-protein binding site in unactivated and activated forms. Biochem-
                          istry 40: 11932.
                    PDB: 119D, Leonard GA, Hunter WN. (1993). Crystal and molecular structure of d(CGTAGATCTACG) at
                          2.25 A resolution. J. Mol. Biol. 234: 198.
                    PDB: 3HSF, Damberger FF, Pelton JG, Liu C, Cho H, Harrison CJ, Nelson HCM, Wemmer DE. (1995).
                          Refined solution structure and dynamics of the DNA-binding domain of the heat shock factor from
                          Kluyveromyces lactis. J. Mol. Biol. 254: 704.
                    Penrose LS, Penrose R. (1957). A self-reproducing analogue. Nature 179: 1183.
                    Penrose LS. (1958). Mechanics of self-reproduction. Ann. Hum. Genet. 23: 59–72.
                    Pieroni O, Fissi A, Angelini N, Lenci F. (2001). Photoresponsive polypeptides. Acc. Chem. Res. 34: 9–17.
                    Rohl CA, Strauss CE, Misura KM, Baker D. (2004). Protein structure prediction using Rosetta. Methods
                          Enzymol. 383: 66–93.
                    Schalley CA, Beizai K, Vogtle F. (2001). On the way to rotaxane-based molecular motors: studies in molecular
                          mobility and topological chirality. Acc. Chem. Res. 34: 465–76.
                    Schnitzer MJ, Block SM. (1997). Kinesin hydrolyses one ATP per 8-nm step. Nature 388: 386–90.
                    Seeman NC. (1998). DNA nanotechnology: novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27:
                          225–48.
                    Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD. (2000). Powering an
                          inorganic nanodevice with a biomolecular motor. Science 290: 1555–8.
                    Smith SS. (2001). United States Patent No. 6,200,782, 13 March 2001.
                    Tobias I, Swigon D, Coleman BD. (2000). Elastic stability of DNA configurations. I. General theory. Phys.
                          Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61: 747–58.
                    Ueno T, Oosawa K, Aizawa S. (1992). M ring, S ring and proximal rod of the flagellar basal body of
                          Salmonella typhimurium are composed of subunits of a single protein, FliF. J. Mol. Biol. 227: 672–7.
                    Ueno T, Oosawa K, Aizawa S. (1994). Domain structures of the MS ring component protein (FliF) of the
                          flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 236: 546–55.
                    Vale RD, Milligan RA. (2000). The way things move: looking under the hood of molecular motor proteins.
                          Science 288: 88–95.
                    Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM. (1998). Force and velocity measured for
                          single molecules of RNA polymerase. Science 282: 902–7.
                    Walker JE. (1998). ATP Synthesis by Rotary Catalysis (Nobel Lecture). Angewandte Chemie Intternational
                          Edition 37: 2308–19.
                    Yan H, Zhang X, Shen Z, Seeman NC. (2002). A robust DNA mechanical device controlled by hybridization
                          topology. Nature 415: 62–5.
                    Yasuda R, Noji H, Kinosita K, Jr., Yoshida M. (1998). F1-ATPase is a highly efficient molecular motor that
                          rotates with discrete 120 degree steps. Cell 93: 1117–24.
   235   236   237   238   239   240   241   242   243   244   245