Page 122 - Calculus Demystified
P. 122

CHAPTER 4
                         SOLUTION     The Integral                                               109
                                                                                2
                           We use the Fundamental Theorem. In this example, f(x) = x . We need to
                         find an antiderivative F. From our experience in Section 4.1, we can determine
                                     3
                         that F(x) = x /3 will do. Then, by the Fundamental Theorem of Calculus,
                                      2                       3     3

                                        2                    2    0     8
                                       x dx = F(2) − F(0) =     −    = .
                                     0                        3    3    3
                         Notice that this is the same answer that we obtained using Riemann sums in
                         Example 4.4.
                         EXAMPLE 4.6
                         Calculate

                                                   π
                                                     sin xdx.
                                                  0
                         SOLUTION
                           In this example, f(x) = sin x. An antiderivative for f is F(x) =− cos x.
                         Then

                              π
                                sin xdx = F(π) − F(0) = (− cos π) − (− cos 0) = 1 + 1 = 2.
                             0
                         EXAMPLE 4.7
                         Calculate

                                            2
                                              x
                                                          3
                                             e − cos2x + x − 4xdx.
                                           1
                         SOLUTION
                                                  x
                                                               3
                           In this example, f(x) = e − cos 2x + x − 4x. An antiderivative for f is
                                                   4
                                                           2
                                 x
                         F(x) = e − (1/2) sin 2x + x /4 − 2x . Therefore
                            2

                                            3
                               x
                              e − cos 2x + x − 4xdx = F(2) − F(1)
                           1
                                                                           4
                                                          2   1           2        2
                                                     = e −     sin(2 · 2) +  − 2 · 2
                                                              2            4
                                                                             4
                                                                1           1
                                                            1                        2
                                                       − e −     sin(2 · 1) +  − 2 · 1
                                                                2           4
                                                                 1                9
                                                         2
                                                     = (e − e) − [sin 4 − sin 2]− .
                                                                 2                4
   117   118   119   120   121   122   123   124   125   126   127