Page 93 - Calculus with Complex Numbers
P. 93

3  D erivatives
        If c = reio =  .v + iy, then

                                              X
        log c = log r + io =  1 lo (.x2 + y2) + i tan- 1 -
                          z  g                 .
                                              A
        ut       1 l  (x2 + y2)  gt x, y) = tan-l -
                                             X
          . x, y) - z og  .  ,   .             .
                                             A












        ut.'r, y) = .r(.r2 + y2 - 2),  tlt.x, y) = -y@2 + ,2 - 2).

         é) u   o   o      é) u        é) ??
        -    =   3.:7* + yz' - 2,  -  = 2.xy,  -  = -2.xy,
         é).x              é) y        é).x
         é) u   é) t?
        -    =  - -    for a1l .x y.
         J )'   J.Y       '
         é) u   é) t?
        -     = -  only when
         9.:7  é) y
        3.x2 + ,2 - 2 = - 2  -  3y2 + (2
                       .x
        which simplilies to

         2
        .r   .y y2 . j .

          For Iz I= 1 we have



        lf f (z) is real valued, then t? (x , y) = 0. Therefore,

         é) u   é) t?  bu     9 t?
            =    =  0,    =  -    =  0.
         9.:7  é) y    èy     9.1
          Therefore u (x , y) = corlstant.
        ez sin z = z + .:2 + c3/3 - c5/30 + . . . .
   88   89   90   91   92   93   94   95   96   97   98