Page 97 - Calculus with Complex Numbers
P. 97

6  Eval uation of i nfi nite real i ntegrals
           1  h
               as singularities at z = +2/ .
        . z2 + 4

          The residue at z = li is 1/4ï (differentiate the denominator).
              dz      zr R
                   :é  -    (R > 2) --> 0  as R --> co.
          /  . :2 + 4   R'L - 4
           2






                  vlz              ,,.p
          /
         ./' (c2 + l)(c2 + 4.) ' (.p2 - 1)(.p2 - 4.) CR > 2) -' '' as R --> co.
           2




          To get the residue we have to compute the Laurent expansion. Put t = z - i .
        Then we have









        (using the binomial theorem with exponent -2). Therefore the residue is 1/4ï .

                                             as R --> co.











                                                as R --> co.




          C<'  cosw dx        C<'   eix dx
                        =  Re              .
             . x2 + 2 . x + 2   -oo .x2 + 2 .x + 2
   92   93   94   95   96   97   98   99   100   101   102