Page 101 - Calculus with Complex Numbers
P. 101

Take flz) = .:4 + 1, g (c) = c. The zeros of f (z) are at û?, a?, û?5, û)7
        where û? = eiICI4 Let y = n + yz + p  where yl is the straight line z = .x
                                         ,
        (0 s .x s R), yz is the arc c = eit (0 s t :s(:v/2), and p is the straight line

        z = iy (R k: y k: 0).
                   W e have .x4 + 1 >
                                  . x . (Clearly! )

            On p'z

          Hence Iflz) I> Ig (z) Ion y if R > 2. Therefore f (z) = ./ + 1,



        flz) + g (z) = .:4 + c + 1 have the same number of zeros inside y if R > 2,
        namely 1. Argue similarly for the other quadrants.
   96   97   98   99   100   101   102   103   104   105   106