Page 99 - Calculus with Complex Numbers
P. 99

Sum  m ation of series
        >4/90.

        7>4/720, >4/96.
        Observe that
         CO    j      CO  j     j
        X n (s + 1 ) - Y/ ( -s - n + 1 )
         1


                      ( l - .l. ) + ( ) - .l.) + . . . + ( ) - s ) 1 ) + . . . - l .

                           a
                                     a
                    -
        lf y is the square with centre 0, and half side N + 1/2, then
            cot n'z      8 (N + 1/2) coth zr/2  16 coth zr/2
         16  c(c + 1) dz Y (>F + 1/2)(>F + 3/2) -  2:7 + 3  -* 0
          r
        as N --> co. For n # 0 - 1 we have

             cot n'z      1
        Res         =          .
        z=n c(c + 1)  n'n (n + 1)
          At z = 0 we have








        which shows that z = 0 is a double pole with residue - 1/>.
          At z = - 1 we have putting t = z + 1












        which shows that z = - 1 is also a double pole with residue - 1/>.
          Therefore by the residue theorem we have

                          N              .V-1
                                       -
                                +

                                                      n
                                       n


                                   )

                                  1
                                     F
                                                      -
                                                  1

                                                +
                                                   )



                                          L
                                          y

                                         z
                                              (

                                            n

                              n
                1
              +


                   '

                 )

         /
        J c       '  -  .  -  (     -   .     n     -
            cotz,c  1 x..--  1  1 x..--  1  1. '
             c

            (
                   '
                          1
                          &
                         .



                             n

                   Z



                       -
                       n
   94   95   96   97   98   99   100   101   102   103   104