Page 98 - Calculus with Complex Numbers
P. 98

=   j ei (x-biy) j= j eix-y j= j eixe-y j = e-y :j( 1 on yz.

                                                  as R --> co.






          The residue at z = - 1 + i is c-1 -i (li . Therefore,
          co   eix ty .x    -   1 - i
                        = 7(e   .
             x2 + 2
             .    .x + 2






          The residue at c = û? is
          2 + 1  û)7 + 0)5   .//'-/   i
                              2
        *
                                        2
          4*3       4         4      2.$//--
                                       /
          The residue at c = 0)3 is
          * 6 + 1  û)6 + 1  a)5 + .)7   yxi      i
            4*9      4*        4         4      2.$ ,7-1'
                                                 ,
            .:2 + 1    n'RLRI + 1)
                  dz s     4      (R > 1) --> O  as R --> co.
          /  . :4 + 1     R - 1
           2
        Use a pizza slice contour with angle 2>/5.
     8.  Observe that for .x real
          sin.x 3  3 sin x - sin 3.x   3c01 - e3ix
                      .
                =               =  Im         ,
           . x         4.x3             4x3
        and that for z complex

        3 eiz - e3iz  3 (1 + iz - z2/ 21 + ...) - (1 + 3ïc - 9:2/ 21 + ... )
           4c3                          4c3
   93   94   95   96   97   98   99   100   101   102   103