Page 209 - Cam Design Handbook
P. 209

THB7  8/15/03  1:58 PM  Page 197

                                GEOMETRY OF PLANAR CAM PROFILES            197


                                          s
                                      v =  i  A (  r +  B r )            (7.52a)
                                       i     ii  ii+1
                                          3
            where A i and B i are the scalars defined as
                                              1     s 2
                                                 ◊ +
                                         ◊
                                     A ∫ rr  +  rr   i                   (7.52b)
                                     i  i  i+1  i  i
                                              2      4
                                             1      3
                                                ◊ +
                                         ◊
                                                      2
                                   B ∫ 2rr  -  rr    s .                 (7.52c)
                                    i   i  i+1  i  i  i
                                             2      4
               Equations (7.45), (7.48), and (7.49 to 7.52c) are the relations sought.
               7.4.3.2.1 Spline  Approximation  of  the  Boundary.  The  formulas  introduced  in
            Angeles et al. (1990) are now applied to regions whose boundary is approximated by peri-
            odic parametric cubic splines. Recalling expressions (7.26a and b), the (x, y) coordinates
            of one point on the boundary are represented as functions of parameter p, while x i and y i
            represent the Cartesian coordinates of the ith supporting point of the spline. Moreover,
            integrals (7.42a to c) are approximated as
                                             n-1
                                          A ª Â  A i                     (7.53a)
                                              1
                                        n-1        n-1
                                    Q ª Â Q ,  Q ª Â Q O                 (7.53b)
                                           O
                                     O
                                                O
                                     x     xi   y     yi
                                        1          1
                               n-1      1  n-1   n-1        n-1
                           I ª Â I ,  I ª  Ê Â I + Â I  ˆ ,  I ª Â  I    (7.53c)
                            O
                                                         O
                                     O
                            x    xi  xy  2  Ë  xyi  yxi ¯  y  yi
                               1           1     1          1
            with
                                   1  p i+1        5
                                            x y dp = Â
                                A =  Ú  ( xy¢ + ¢ )  a (D p ) k          (7.53d)
                                 i                    ik  i
                                   2  p i          k=1
                                   1  p i+1        9
                                             ) ¢
                               Q =  Ú  ( x +  y y dp = Â q (D p ) k      (7.53e)
                                O
                                         2
                                            2
                                xi                    xik  i
                                   2  p i          k=1
                                    1  p i+1        9
                              Q =-   Ú  ( x +  y x dp = Â q (D p ) k     (7.53f)
                                              ) ¢
                               O
                                          2
                                             2
                               yi                      yik  i
                                    2  p i          k=1
            where
                                          dx     dy
                                      x ¢ ∫  ,  y ¢ ∫  .
                                          dp     dp
               The polynomial coefficients a ik , q xik , and q yik appearing in Eqs. (7.53d to 7.53f) are
            included in App. C: Polynomial Coefficients. The components I xi, I yi, I xyi, and I yxi of the
            inertia matrix are computed as
                               1  p i+1
                                                ¢ )
                                         2
                                     2
                            I =  Ú  ( x +  y )( xy¢ + 3 x y dp
                            xi
                               8  p i
                               1  p i+1         3  p i+1
                                         ) ¢
                                         2
                                                          ) ¢
                                                         2
                                     2
                              =  Ú  ( x +  y xy dp +  Ú  ( x +  y x ydp  (7.54a)
                                                      2
                               8  p i           8  p i
   204   205   206   207   208   209   210   211   212   213   214