Page 214 - Cam Design Handbook
P. 214

THB7  8/15/03  1:58 PM  Page 202

          202                      CAM DESIGN HANDBOOK


                                1  m          1
                           A = Â   s ( m ◊ n )  pp ds,  p ŒG  .        (7.75a)
                                                 T
                                           ,
                             i      i k ,  ik ,  ik Ú 0  ik ,
                                4  k=1
          where
                         pp = ( mm )+( mh +   hm )+(   hh ) s 2        (7.75b)
                                                  T
                                   T
                                           T
                           T
                                                          T
                                                          ik ,
                                                        ik ,
                                                  ik ,
                                         ik ,
                                   ik ,
                                                ik ,
                                           ik ,
                                ik ,
          and hence
                       1               1                1
                        pp ds = ( mm )+ ( mh +  hm )+ (   hh ).
                                    T
                                                     T
                                             T
                          T
                                                              T
                                       2                3
                      Ú 0        ik ,  ik ,  ik ,  ik ,  ik ,  ik ,  ik ,  ik ,  (7.75c)
          Also
                                  m
                                1
                                              1
                            a = Â  s (m  ◊ n  ) p  2 ds, p  G  .
                                                      Œ
                                            ,
                             i      i k ,  i k ,  i k Ú 0  ik ,
                                4  k=1
          where
                                                    2
                                 2
                                      2
                                p =  m +  2 m    ◊  h s +  h s  2
                                      ik ,  ik ,  ik ,  ik ,
          and hence,
                                1                  1
                                0 Ú  p ds =  m +  m    ◊  h +  3  h .
                                       2
                                                      2
                                  2
                                        ,
                                       ik
                                            ik
                                                      ik
                                                      ,
                                                ik
                                                ,
                                             ,
          Furthermore,
                               1  m           1
                            b =   s  m (  ◊    n )  p pds,  p Œ  G

                                               2
                             i     i k ,  , i k  i k Ú 0  ik ,
                                           ,
                               5  k=1
          where
                                               2
                                         2
                                   pp =  pm +  ph s.
                                    2
                                                 ik
                                                 ,
                                            ,
                                           ik
          Therefore,
                           1  2      Ê  2          1  2 ˆ
                           0 Ú  ppds =  m  ik ,  Ë m +  m    ◊  h +  3  h  ik ,  ¯
                                                ,
                                            ,
                                            ik
                                        ,
                                                ik
                                       ik
                                      Ê  1   2         1  2 ˆ
                                  +  h  m +    m  ◊  h +  h  .          (7.76)
                                          2
                                     ik ,  Ë  2  ik ,  3  ik ,  ik ,  4  ik ,  ¯
             Once the three surface integrals given in Eqs. (7.72a to 7.72c) have been reduced to
          line integrals and evaluated in plane P i, the results obtained in this 2-D subspace should
          be mapped to produce the results necessary for calculating w i in the 3-D space, Eq. (7.71).
          The scalar quantity a i poses no problem and is readily multiplied by the 3 ¥ 3 identity
          matrix 1 in the expression for w i. Furthermore, matrix A i and vector b i in the 2-D sub-
          space are transformed to their matrix and vector counterparts, respectively, in the 3-D
          space, before being substituted into the expression for w i.
             This  completes  the  calculation  of  w i,  in  terms  of  which  we  can  calculate  the
          matrix second moment of the piecewise-linear approximation of R. See Eqs. (7.68) and
          (7.69).
   209   210   211   212   213   214   215   216   217   218   219