Page 41 - Carbon Nanotube Fibres and Yarns
P. 41
34 Carbon Nanotube Fibers and Yarns
References
[1] W. Li, S. Xie, L.X. Qian, B. Chang, B. Zou, W. Zhou, et al., Large-scale synthesis of
aligned carbon nanotubes, Science 274 (5293) (1996) 1701–1703.
[2] Z. Ren, Z. Huang, J. Xu, J. Wang, P. Bush, M. Siegal, et al., Synthesis of large arrays of
well-aligned carbon nanotubes on glass, Science 282 (5391) (1998) 1105–1107.
[3] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented
regular arrays of carbon nanotubes and their field emission properties, Science 283 (5401)
(1999) 512–514.
[4] D.N. Futaba, J. Goto, S. Yasuda, T. Yamada, M. Yumura, K. Hata, General rules gov-
erning the highly efficient growth of carbon nanotubes, Adv. Mater. 21 (47) (2009)
4811–4815.
[5] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Water-assisted high-
ly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306
(5700) (2004) 1362–1364.
[6] M. Bedewy, E.R. Meshot, H. Guo, E.A. Verploegen, W. Lu, A.J. Hart, Collective
mechanism for the evolution and self-termination of vertically aligned carbon nano-
tube growth, J. Phys. Chem. C 113 (48) (2009) 20576–20582.
[7] K. Jiang, Q. Li, S. Fan, Spinning continuous carbon nanotube yarns, Nature 419 (2002)
801.
[8] X. Zhang, K. Jiang, C. Feng, P. Liu, L. Zhang, J. Kong, et al., Spinning and processing
continuous yarns from 4-Inch wafer scale super-aligned carbon nanotube arrays, Adv.
Mater. 18 (12) (2006) 1505–1510.
[9] M. Zhang, K. Atkinson, R.H. Baughman, Multifunctional carbon nanotube yarns by
downsizing an ancient technology, Science 306 (5700) (2004) 1358–1361.
[10] C.P. Huynh, S.C. Hawkins, Understanding the synthesis of directly spinnable carbon
nanotube forests, Carbon 48 (4) (2010) 1105–1115.
[11] Q.W. Li, X.F. Zhang, R.F. DePaula, L.X. Zheng, Y.H. Zhao, L. Stan, et al., Sustained
growth of ultralong carbon nanotube arrays for fiber spinning, Adv. Mater. 18 (23)
(2006) 3160–3163.
[12] A. Fallah Gilvaei, K. Hirahara, Y. Nakayama, In-situ study of the carbon nanotube yarn
drawing process, Carbon 49 (14) (2011) 4928–4935.
[13] S. Zhang, L. Zhu, M.L. Minus, H.G. Chae, S. Jagannathan, C.-P. Wong, et al.,
Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by
water-assisted chemical vapor deposition, J. Mater. Sci. 43 (13) (2008) 4356–4362.
[14] C. Jayasinghe, S. Chakrabarti, M.J. Schulz, V. Shanov, Spinning yarn from long carbon
nanotube arrays, J. Mater. Res. 26 (5) (2011) 645–651.
[15] K. Liu, Y. Sun, L. Chen, C. Feng, X. Feng, K. Jiang, et al., Controlled growth of
super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets
with tunable physical properties, Nano Lett. 8 (2) (2008) 700–705.
[16] Y. Cui, B. Wang, M. Zhang, Optimizing reaction condition for synthesizing spinnable
carbon nanotube arrays by chemical vapor deposition, J. Mater. Sci. 48 (21) (2013)
7749–7756.
[17] C. Zhu, C. Cheng, Y.H. He, L. Wang, T.L. Wong, K.K. Fung, et al., A self-entanglement
mechanism for continuous pulling of carbon nanotube yarns, Carbon 49 (2011) 4996–
5001.
[18] C.P. Huynh, S.C. Hawkins, M. Redrado, S. Barnes, D. Lau, W. Humphries, et al., Evo-
lution of directly-spinnable carbon nanotube growth by recycling analysis, Carbon 49
(6) (2011) 1989–1997.
[19] Q. Zhang, W.P. Zhou, W.Z. Qian, R. Xiang, J.Q. Huang, D.Z. Wang, et al., Synchro-
nous growth of vertically aligned carbon nanotubes with pristine stress in the hetero-
geneous catalysis process, J. Phys. Chem. C 111 (40) (2007) 14638–14643.