Page 64 - Carbon Nanotube Fibres and Yarns
P. 64

Carbon nanotube fibers spun directly from furnace   55


              of the material. The interaction between CNTs inside the fiber plays an
              important role in the final fiber properties. A closely-packed fiber struc-
              ture will benefit the fiber properties. Further densification can be achieved
              by post-processing methods. The fibers spun from floating catalyst fur-
              nace provide a promising solution for scaling up the nanomaterial pro-
              duction. A combination of improved individual CNT structure, assembly
              method, and post-processing process is required to further improve the
              fiber properties.


              Acknowledgment

              This research was broadly supported by ONR Award N00014-15-1-2473; the NSF ERC
              EEC-0812348; the UCTAC Seed Grant under ESP TECH 15-0160; the Univ. of Cincinnati
              Education and Research Center Targeted Research Training program (UC ERC-TRT
              Program); the Water Environment & Reuse Foundation; and the NSF I/UCRC Center for
              Intelligent Maintenance Systems (IMS).


              References

                [1]  S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58, https://
                 doi.org/10.1038/354056a0.
                [2]  A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene
                 decomposition, J. Cryst. Growth 32 (1976) 335–349, https://doi.org/10.1016/0022-
                 0248(76)90115-9.
                [3]  H.P. Boehm, Carbon from carbon monoxide disproportionation on nickel and iron
                 catalysts: morphological studies and possible growth mechanisms, Carbon 11 (1973)
                 583–590, https://doi.org/10.1016/0008-6223(73)90323-0.
                [4]  M. Monthioux, V.L. Kuznetsov, Who should be given the credit for the discovery of
                 carbon nanotubes?, Carbon 44 (2006) 1621–1623,  https://doi.org/10.1016/j.car-
                 bon.2006.03.019.
                [5]  A.J. Hart, Chemical, Mechanical, and Thermal Control of Substrate-Bound Carbon
                 Nanotube Growth, 68, 2006.
                [6]  C. Paukner, K.K.K. Koziol, Ultra-pure single wall carbon nanotube fibres continuously
                 spun without promoter, Sci. Rep. 4 (2014) 3903https://doi.org/10.1038/srep03903.
                [7]  W. Ren, F. Li, S. Bai, H.-M. Cheng, The effect of sulfur on the structure of carbon
                 nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechnol. 6 (2006)
                 1339–1345, https://doi.org/10.1166/jnn.2006.301.
                [8]  V. Reguero, B. Alemán, B. Mas, J.J. Vilatela, Controlling carbon nanotube type in
                 macroscopic fibers synthesized by the direct spinning process, Chem. Mater. 26 (2014)
                 3550–3557, https://doi.org/10.1021/cm501187x.
                [9]  M. Motta, A. Moisala, I.A. Kinloch, A.H. Windle, High performance fibres from ‘dog
                 bone’ carbon nanotubes, Adv. Mater. 19 (2007) 3721–3726, https://doi.org/10.1002/
                 adma.200700516.
                [10]  K.-H. Lee, S.-H. Lee, J. Park, H.-R. Kim, J. Lee, Synthesis of high-quality carbon na-
                 notube fibers by controlling the effects of sulfur on the catalyst agglomeration during
                 the direct spinning process, RSC Adv. (2015) 41894–41900, https://doi.org/10.1039/
                 C5RA04691B.
   59   60   61   62   63   64   65   66   67   68   69